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1. INTRODUCTION

Information is intended to benefit its recipient by allowing better decision
making. Meanwhile, learning or information processing can be costly. These
costs can cause the recipient to ignore some available information. This mo-
tivated Simon (1971, 1996) to call for the design of “intelligent information-
filtering systems.”

In our recent paper (Lipnowski, Mathevet, and Wei, 2020, “LMW” here-
after), we propose a theoretical framework to study the information-filtering
problem aimed at managing a receiver’s attention. Despite strong preference
alignment, we show that a benevolent sender can have incentives to withhold
information in order to induce an agent to pay “better” attention and make
better decisions. While a necessary and sufficient condition is provided for
when information should be withheld, optimization (i.e., how to optimally
withhold information) is left open. The goal of this paper is to analyze this
question in a tractable specification of LMW’s model.

We propose a quadratic model of a principal providing information to a
rationally inattentive agent. The agent cares about his material loss, de-
fined as the squared error between his action and the state, and also about
the cost of processing information, defined as the squared Euclidean dis-
tance between his prior and posterior beliefs. The principal, however, is mo-
tivated only by the agent’s material welfare, as a teacher is motivated by
her student’s educational outcomes or a doctor by the fitness of her patient’s
medical decisions. Given such costs, the agent decides what information
to acquire, taking whatever information the principal provides as an upper
bound. Choosing said upper bound optimally is our design problem.

The key message from LMW is that attention management is fundamen-
tally about trading off issues, that is, different dimensions of information.
With two states, information can never be misused, because its sole use is
to separate one state from the other; as a result, it is always optimal for the
principal to provide full information. With more than two states, however, in-
formation becomes multidimensional. Intuitively, the agent needs to decide
which aspects of the state to learn about, while at the same time determining
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the total amount of information to acquire. The principal may then strictly
prefer to withhold information to restrict the agent’s flexibility in garbling—
though her sole objective is to help the agent make good decisions—so as to
focus the agent on the most relevant issues.

The quadratic model in the present paper is arguably the simplest avail-
able model with more than two states, because the agent’s preferences over
information are constant in a given “direction.” For this reason, the model
can isolate the new forces that arise from multi-issue attention management.
To study optimal disclosure, we first characterize (in Proposition 1) the in-
formation policies to which the agent willingly pays full attention. We find
that incentive compatibility of distinguishing any given pair of messages in
a policy can be determined by simple comparison of its marginal cost and
benefit, and that pairwise incentive compatibility between messages implies
that the information policy is incentive compatible.

We apply our characterization of agent incentives to solve for the optimal
attention management policy in a canonical example with three states. We
explicitly derive the optimal policy for arbitrary prior beliefs and cost pa-
rameters, showing that it always takes a friendly form: The principal either
downplays or exaggerates the state (Proposition 2). In this example, we can
interpret the principal as a teacher who hopes to maximize her student’s
performance on an (externally administered) exam in which the answer θ to
each question is true (1), false (-1) or uncertain (0). The student can provide an
explanation for his response, so that his action a can be any number between
-1 and 1, and his score, e.g., 4− (a−θ)2, depends on how close his answer is
to the correct one. At intermediate attention costs, partial disclosure is opti-
mal even though the teacher wants the student to learn as much as possible.
Specifically, when attention is relatively cheap, the teacher should present
some of those questions with extreme answers (i.e., true or false) as uncer-
tain (downplaying); when attention is relatively costly, the teacher should
only emphasize the positive or negative side of those uncertain questions (ex-
aggerating). By carefully withholding information, the teacher incentivizes
the student to pay more attention to the available and more relevant aspects,
leading to even better decision making.
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Related Literature. Our paper lies at the interface of two literatures: per-
suasion through flexible information (Kamenica and Gentzkow, 2011) and
rational inattention (Sims, 1998, 2003). The most related works, featuring
well-intentioned information transmission with a flexibly inattentive audi-
ence, are those of Lipnowski, Mathevet, and Wei (2020) and Bloedel and
Segal (2021).1

In Lipnowski, Mathevet, and Wei (2020), we propose the theoretical frame-
work used in this paper, and find a necessary and sufficient condition for
when attention management is useful. The present paper studies how to
optimally manage attention, by specializing the framework to a tractable
payoff environment.

Our exercise is closest in spirit to that of Bloedel and Segal (2021), which
studies a similar problem with substantially different modeling assump-
tions. Most notably, the qualitatively different cost specifications make the
respective analyses relevant to distinct applications.2 When information is
provided by another party (the principal), the agent’s uncertainty could be
about the realized message or about the underlying state of the world. In the
model of Bloedel and Segal (2021), the agent bears an (entropy-based) cost
to learn what message the principal has sent. In our model, following our
previous paper, the agent bears a (quadratic) cost to learn the state. Thus,
their cost specification is a cost of deciphering direct communication, while
ours is better-suited to capture the cost of processing available data.

2. THE MODEL

We study the exact setting of LMW, specialized to a quadratic-payoff spec-
ification. Let Θ⊆R be a finite set of states and A be its convex hull. An agent

1. In addition, Lester, Persico, and Visschers (2012) analyze evidence exclusion in courts of law, where a
judge chooses which of the finite pieces of evidence should be considered by the jury who then choose a subset of
those to examine at a cost. They provide examples in which evidence exclusion leads to fewer sentencing errors.
We study the same basic tradeoff in a flexible-information framework. Wei (2021) applies our framework to
misaligned preferences, studying a buyer-seller setting.

2. In addition to aligned preferences, Bloedel and Segal (2021) also study the case of misaligned preferences,
which lend the principal two reasons to withhold information: to bias the agent’s decision, and to manipulate
his attention.
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must make a decision a ∈ A in a world with uncertain state θ ∈Θ distributed
according to a full-support prior distribution µ ∈∆Θ. When the agent chooses
a in state θ, his material payoff is given by u(a,θ) :=−(a−θ)2. The principal’s
payoff is equal to the agent’s material utility, u.

In addition to his material utility, the agent also incurs an attention cost.
As in the rational inattention literature, this cost is interpreted as the utility
loss from processing information. To define it, first let

R
(
µ
)

:=
{

p ∈∆∆Θ :
∫
∆Θ
ν dp(ν)=µ

}
be the set of (information) policies, which are the distributions over the
agent’s beliefs such that the mean equals the prior. It is well-known that
signal structures and information policies are equivalent formalisms (e.g.,
Kamenica and Gentzkow, 2011). For a given cost parameter κ> 0, we define
the attention cost C : R

(
µ
)→R+ given by

C(p)=
∫
∆Θ

c(ν) dp(ν)=
∫
∆Θ
κ||ν−µ||2 dp(ν),

where || · || is the Euclidean norm on RΘ. This cost function is posterior sep-
arable, that is, linear in the induced distribution of posterior beliefs.3 By
Jensen’s inequality, processing more information, in the sense of obtaining a
policy p more (Blackwell) informative than q, denoted p ⪰B q,4 will incur a
higher cost.

The timing of the game is as follows:

– The principal first chooses an information policy p ∈R(µ).

– The agent then decides to what extent he should pay attention to p: He
chooses a policy q ∈ R(µ) such that q ⪯B p. Such a policy q is called an

3. For discussion and decision-theoretic foundations of posterior-separable costs, see Caplin, Dean, and
Leahy (2021); Morris and Strack (2019); Hébert and Woodford (2021); Denti (2021).

4. For any p, q ∈ R(µ), p ⪰B q if p is a mean-preserving spread of q, that is, there is some measurable
r :∆Θ→∆∆Θ such that (i) p(S) = ∫

∆Θ r(S|·) dq,∀ Borel S ⊆∆Θ and (ii) r(·|ν) ∈ R(ν),∀ν ∈∆Θ. As is standard,
this formalism is equivalent to one in which the principal chooses an experiment Θ→∆MP , the agent (having
seen the choice of experiment but not a realized message) chooses a Blackwell garbling MP →∆MA , and the
agent observes the realization (in MA) of the composed experiment. The agent’s garbling captures inattention
and the loss of information it causes.
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(attention) outcome.

– Nature draws an agent belief ν ∈∆Θ via q.

– The agent chooses an action a ∈ A.

– Nature chooses a state θ ∈Θ via ν.

We study principal-preferred subgame perfect equilibria of this game.
Define the principal’s and the agent’s indirect utilities at ν ∈∆Θ as:

UP(ν)=U(ν) :=max
a∈A

∑
θ∈Θ

u(a,θ)ν(θ),

UA(ν)=U(ν)− c(ν).

The principal’s problem can then be formalized as follows:

sup
p,q

∫
∆Θ

UP dq

s.t. p ∈R
(
µ
)

and q ∈G∗(p),
(1)

where

G∗(p) := argmax
q∈R(µ): q⪯B p

{∫
∆Θ

U dq−C(q)
}
= argmax

q∈R(µ): q⪯B p

∫
∆Θ

UA dq

is the agent’s optimal garbling correspondence. An information policy p∗ ∈
R(µ) is (principal-) optimal if (p∗, q∗) solves (1) for some outcome q∗ ∈
∆∆Θ. The corresponding q∗ is an optimal (attention) outcome.

As formalized, it is clear that the principal’s problem is one of delegation.
The policy p chosen by the principal only appears in the constraint and does
not directly affect any party’s payoff. In effect, the principal makes available
a menu of information policies, from which the agent picks his preferred one.

We carry out our analysis under specific assumptions on the form of the
agent’s material payoff and his information processing cost. The foremost
reason for our choice of the functional form is tractability: With quadratic
preferences, we can fully characterize the set of incentive-compatible infor-
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mation policies, which serves as a foundation for finding an optimal policy.5

In addition to technical convenience, we see an important conceptual ad-
vantage to studying quadratic preferences. In short, quadratic preferences
isolate the new forces that arise due to multidimensionality of the agent’s
problem. See Section A.1 for a discussion on this point, and also for a more
general class of quadratic preferences that enjoy the same advantages.

3. SIMPLIFYING DISCLOSURE

In this section, we reduce the principal’s disclosure problem to an amenable
form. We first recall the existence result established in our previous paper,
with an additional simplification, to reduce the constraint set to incentive-
compatible policies with small support. We then provide a meaningful char-
acterization of such policies, exploiting the quadratic structure of the present
model. As such, we set the stage for deriving principles and solutions to the
attention management problem.

3.1 Rewriting the Principal’s Program

Our previous paper establishes the existence of solution to the principal’s
problem, additionally showing that some optimum takes a special and con-
venient form.6 Say that an information policy p ∈ R(µ) is incentive com-
patible (IC) if the agent finds it optimal to pay full attention to it, that is, if
p ∈G∗(p); and say it is nonredundant if supp(p) is affinely independent.

LEMMA 1. There exists a nonredundant solution q∗ to

max
q

∫
∆Θ

UP dp

s.t. (i) q ∈R(µ)

(ii) q is IC

(2)

5. Such tractability also enables complete solutions in Ely, Frankel, and Kamenica (2015), which uses the
quadratic distance between beliefs to model preferences for suspense and surprise.

6. The result we report here is stronger than Lemma 1 as stated in LMW. However, the proof for this
strengthened result was recorded in LMW’s Online Appendix.
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Moreover, q∗ solves (2) if and only if (p∗, q∗) solves (1) for some p∗.

The lemma shows that focusing on nonredundant, incentive-compatible
information policies is without loss. Since Θ is finite, nonredundancy implies
the need for fewer messages than there are states. Thus, Lemma 1 reduces
an infinite-dimensional optimization problem to a finite-dimensional one. In
addition to having a small support, a nonredundant information policy en-
joys another technical convenience: Its set of garblings is straightforward to
describe, which simplifies the task of checking whether it is IC. Specifically,
for all p, q ∈R(µ) with p nonredundant,7

p ⪰B q ⇐⇒ supp(q)⊆ co[supp(p)] .

3.2 Payoffs and Incentives

Below, we index statistical measures, such as expectation E and variance
V, by the distribution of the underlying random variable. For example, Eνθ =∫
Θ θ̃ dν(θ̃), Vνθ = Eν[θ2]− [Eνθ]2 and EpVνθ =

∫
∆ΘVνθdp(ν).

Principal’s Payoff. The marginal distribution of actions is sufficient to
compute our principal’s expected payoffs, due to her simple “match the state”
motive. Indeed, as the agent’s optimal action at any belief ν ∈∆Θ is

a∗(ν) := argmax
a∈A

u(a,ν)= Eνθ,

the principal’s value is given by

UP(ν) :=−Eν[(θ−a∗(ν))2]=−Vνθ,

which is strictly convex in ν.
Take any incentive-compatible information policy p ∈R(µ), and note that∫

∆Θ
UP dp =−EpVνθ =VpEνθ−Vµθ =Vp[a∗(ν)]−Vµθ,

7. See Wu (2018, Theorem 5). He assumes q to have finite support, but the general argument is identical.
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by the law of total variance. Therefore:

OBSERVATION 1. For any IC policies p and p′, the principal strictly prefers
p to p′ if and only if Vp[a∗(ν)]>Vp′[a∗(ν)].

Psychological vs. Material Incentives. We now turn to the agent’s in-
centives. Our goal is to characterize the set of IC policies which serves as the
constraint in the principal’s optimization problem. It turns out that IC can
be characterized by a sequence of local comparisons between psychological
cost and material benefit.

The agent’s attention cost at ν is

c(ν) := κ||ν−µ||2 = κ∑
θ

(νθ−µθ)2,

so that his net indirect utility is

UA(ν) :=UP(ν)− c(ν)=
(∑

θ

νθθ

)2

−κ∑
θ

ν2
θ

+h(ν)

where νθ :=P(θ|ν) and h(ν) is affine in ν.
To understand the agent’s attentional tradeoff in this model, consider first

a binary-support policy. Fix some ν,ν′, and let xθ := νθ−ν′θ for all θ ∈Θ. For
ϵ ∈ [0,1],

1
2

d2

dϵ2UA(ν+ϵ(ν′−ν)) =
(∑
θ

xθθ

)2

−κ∑
θ

x2
θ (3)

= |Eνθ−Eν′θ|2−κ||ν−ν′||2.

This derivative measures the curvature of UA between ν and ν′ and brings
about two notions of distance between beliefs:

– The choice distance, |Eνθ−Eν′θ|, which describes the change in action
caused by a change in beliefs.

– The psychological distance,
p
κ||ν− ν′||, which is proportional to a

standard distance between beliefs.
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The psychological distance measures the marginal cost of extra attention
in a given direction, while the choice distance measures the marginal instru-
mental benefit. A policy with binary support {ν,ν′} is IC if and only if UA is
convex between ν and ν′, that is, if and only if the choice distance exceeds
the psychological distance.8 The next proposition generalizes this fact to all
nonredundant policies.

PROPOSITION 1. A nonredundant policy p ∈R(µ) is IC if and only if

|an+1−an| ≥p
κ||νn+1−νn|| ∀n ∈ {1, . . . , N −1}, (4)

where supp(p)= {ν1, . . . ,νN} such that an := Eνn(θ) and a1 ≤ ·· · ≤ aN .

Condition (4), which we term order-IC, is apparently much weaker than
IC. It can be interpreted as immunity to a particular small family of devi-
ations by the agent: For each pair of consecutive (in terms of their induced
action) messages, the agent would rather pay full attention than engage in
the simple garbling that perfectly pools this pair and pays full attention to
all other messages. In the present quadratic model, one such deviation is
profitable if any deviation from full attention is profitable.9

Beyond being interpretable, the characterization of IC in Proposition 1
is useful. Below, we illustrate how it helps reduce the problem of optimal
attention management. The next section will then use said reduction to fully
solve a canonical example.

8. This observation follows from Jensen’s inequality, together with the observation that the univariate func-
tion ϵ 7→UA(ν+ϵ(ν′−ν)) is (being quadratic) either globally weakly convex or globally strictly concave.

9. In the appendix, we formulate a more general quadratic model of attention management, allowing for
multidimensional action and state spaces. Appropriately generalizing the definitions of choice and psycholog-
ical distances, we can show that Proposition 1 exactly goes through whenever the action space is unidimen-
sional; moreover, even if the actions are not linearly ordered, an analogue of Proposition 1 (without a reference
to “consecutive messages”) still holds.
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3.3 Implications of IC for Optimal Disclosure

For a nonredundant policy p with support {νn}N
n=1 such that N ≥ 2 and

Eν1(θ)≤ ·· · ≤ EνN (θ), let the direction of p be the vector10

(
νn+1−νn

||νn+1−νn||
)N−1

n=1
.

The direction of an information policy is the vector of normalized changes in
uncertainty from one belief to the next. We say that a policy p is interior if
there exists another policy p′ with the same direction such that p′ ≻B p. The
next corollary follows naturally from Proposition 1 and Observation 1.

COROLLARY 1. A nonredundant policy can be an optimal attention outcome
only if no interior and IC policy induces the same distribution of actions.

Corollary 1 is helpful for ruling out a variety of information policies and
reducing the dimension of our optimization problem. First, Corollary 1 im-
plies that an IC information policy admits a strict improvement if it is itself
interior. Said differently, information should be maximal given its direction.
To illustrate graphically, let us consider the belief simplex in a three-state
environment. Note that the direction of an information policy is unaffected
by any affine transformation of beliefs (as in Figures Ia and Ib) or changes in
non-consecutive slopes (as in Figure Ic). Consequently, such transformations
leave the comparisons in (4) (hence, IC) unchanged, and each dashed policy
in Figure I is a strict improvement of the corresponding solid interior policy.

µ

(a)

µ

(b)

µ

(c)

FIGURE I: EXCLUDING INTERIOR POLICIES

10. Referring to “the” direction is a mild abuse of terminology when two distinct beliefs might induce the
same action, leading to an ambiguous order over actions. Because such information policies will obviously
never be IC (as pooling those beliefs is strictly profitable for the agent), this ambiguity is immaterial for our
purposes.
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Moreover, Corollary 1 allows us to rule out some non-interior policies
through a perturbation argument, by finding another interior policy that
is IC and induces the same action distribution. To illustrate graphically, let
us again consider the belief simplex in a three-state environment. In Figure
II, the solid red policy is not interior, so it cannot be ruled out using the pre-
vious argument. Nonetheless, if we can find an interior perturbation (e.g.,
the dashed blue policy) to which it is easier to pay attention, while induc-
ing the same action distribution (hence the same principal payoff),11 then
the dashed policy enables a strict improvement, making the original policy
suboptimal.

µ

a

z

FIGURE II: EXCLUDING SOME NON-INTERIOR POLICIES

4. OPTIMAL ATTENTION MANAGEMENT: THREE STATES

We now apply our results in the previous section to pare down the search
for optimal information in a model with three (evenly spaced) states, Θ =
{−1,0,1}. We can interpret this scenario as a teacher creating a lesson plan to
maximize her student’s score in an exam where the answer to each question
is true (1), false (-1) or uncertain (0).

We represent beliefs in the (a, z) space, where z is the agent’s belief that
θ is zero and a is his optimal action (see Figure IV in the Appendix).12 Rear-
ranging (4), a policy p with supported beliefs νn = ν(an,zn) is IC if and only if
κ≤ 2 and ∣∣∣∣ zn+1− zn

an+1−an

∣∣∣∣≤ s∗(κ) :=
√

2−κ
3κ

∀n.

11. Figure II represents beliefs by the probability z that θ = 0 and the induced action a. This representation
is also used in the next section.

12. The associated belief is ν(a,z) = zδ0 + 1−z+a
2 δ1 + 1−z−a

2 δ−1, for z ∈ [0,1] and a ∈ [z−1,1− z].
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That is, a policy is IC if and only if the absolute slopes between consecutive
beliefs are less than a cutoff.

Before stating our characterization, we introduce a language to speak
about some special policies. Say the principal downplays the state if, for
some π1,π−1 ∈ [0,1], she sends message:

m =


0 : with probability 1, if θ = 0

θ : with probability 1−πθ, if θ ̸= 0

0 : with probability πθ, if θ ̸= 0.

The principal downplays the state if she sometimes says 0 when the true
state is one of the extremes. Complete downplaying (π−1 = π1 = 1) conveys
no information; no downplaying (π−1 =π1 = 0) fully discloses the state; other
forms convey partial information. Let

{
pD

(π−1,π1) : (π−1,π1) ∈ [0,1]2
}

denote the
policies induced by downplaying the state. Say that the principal exagger-
ates the state if, for some π ∈ [0,1], she sends message:

m =


θ : with probability 1, if θ ̸= 0

1 : with probability 1−π, if θ = 0

−1 : with probability π, if θ = 0.

The principal exaggerates the state if she reports an extreme state when the
true state is 0. Increasing π makes the agent more (less) certain that θ = m
upon receiving m = 1 (m = −1). Let separating exaggeration refer to π ∈
{0,1}. Policies induced by exaggerating the state are denoted

{
pE
π : π ∈ [0,1]

}
.

Let aµ =µ1−µ−1 be the agent’s optimal action at the prior, and define

κ1 := 1
2

κ2 := 2
3
4

(1−|aµ|+µ0
1−|aµ|

)2
+1

κ3 := 2

3
(

µ0
1−|aµ|

)2+1

κ4 := 2.

Note that κ1 < κ2 < κ3 < κ4 for any interior µ.
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PROPOSITION 2. In the three-state model, an optimal attention outcome:

1. fully reveals the state when κ ∈ (0,κ1];

2. downplays the state until (4) holds with equality when κ ∈ (κ1,κ2];

3. engages in separating exaggeration when κ ∈ [κ2,κ3];13

4. exaggerates the state until (4) holds with equality when κ ∈ (κ3,κ4];

5. reveals no information when κ ∈ (κ4,∞).

Moreover, for generic κ, every optimal attention outcome is of the above
form.14

µ

a

z

κ≤ κ1
(Full revelation)

µ

a

z

κ1 < κ≤ κ2
(Downplaying)

frequency of mistakes

µ

a

z

κ2 ≤ κ≤ κ3
(Separating exaggeration)

µ

a

z

κ3 ≤ κ≤ κ4
(Exaggeration)

µ

a

z

κ> κ4
(No disclosure)

FIGURE III: OPTIMAL ATTENTION OUTCOMES

When attention comes at low cost, the principal keeps quiet (i.e., reports
0) on some extreme occasions and is truthful the rest of the time. That is,
she downplays the state. As shown in Figure III, this invites either inaction
from the agent, who chooses 0, or an extreme reaction {−1,1}. The latter are
never mistaken, because they happen in precisely the principal’s reported
extreme state. However, inaction is harmful in extreme situations, so the
agent makes all his mistakes through action 0. The frequency of mistakes,
shown in Figure III, is chosen so that the agent is barely willing to pay full

13. In particular, π= 1 (π= 0) is optimal if and only if aµ ≥ 0 (aµ ≤ 0).
14. When κ= κ2, both downplaying and separating exaggeration are optimal, and continuum many optima

exist that mix these two policies. For any other κ, there is a unique optimal attention outcome (up to reversing
the role of 1 and −1 in the case that the prior is symmetric).
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attention. Under this type of information disclosure, mistakes are large,
always of size 1, but they are kept rare as long as κ≤ κ2.

As inattention grows more severe, the principal increasingly downplays
the state to keep the agent’s attention. Eventually, the principal switches
to exaggerating the state to avoid the potentially harmful consequences of
extreme behaviors and maintain the agent’s full attention. Exaggeration
results in smaller mistakes (than under downplaying, because their size is
strictly less than 1), although they occur more often.

Our result implies that for intermediate attention costs, the principal can
improve the material welfare of the agent by excluding some information.
This observation recalls principles from the delegation literature (Szalay,
2005) showing that restricting an agent’s choices can incentivize informa-
tion acquisition. By downplaying or exaggerating the state, the principal
endogenously restricts the agent’s behavior, activating the same incentive
channel.

5. CONCLUSION

This paper aims at understanding how a benevolent principal should op-
timally withhold information to help an inattentive agent make informed de-
cisions. Building on the framework of Lipnowski, Mathevet, and Wei (2020),
we present a tractable environment with quadratic payoffs where incentive-
compatible information can be fully characterized. We illustrate the impli-
cations of incentive compatibility on optimal disclosure, and further apply
them to derive optimal information policies in a canonical example with mul-
tidimensional information. As such, this paper provides insight into how to
optimally manage attention.
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A. APPENDIX

A.1 A General Quadratic Model of Attention Management

In this section, we outline a model of attention management with general quadratic
preferences. Such a model is of interest for the following reason. The main result of LMW
is that full information is universally optimal (that is, optimal for every choice problem
and preference specification) if and only if the state space is binary. One can reinterpret this
result as saying that any scope for beneficial attention management derives from the agent’s

16



space of beliefs being multidimensional. We see quadratic preferences as particularly well-
suited to isolate the richness imparted by multidimensional beliefs, as the benefits and costs
of information—captured by the degree of convexity of UA and c—are constant along every
“one-dimensional slice” of the space of beliefs.15

The generalized model is exactly as in Section 2, except with a more general specification
of the state space, action space, material objective, and cost of information. Given J ∈N, let
Θ⊆RJ be some finite nonempty set, and A be the convex hull of Θ (or some compact subset
of RJ that contains it). Given arbitrary vectors γ,π ∈RΘ and arbitrary positive semidefinite
matrices Γ ∈ RJ×J and Π ∈ RΘ×Θ, assume the material objective u : A ×Θ→ R is given by
u(a,θ) := γθ− (a−θ)⊤Γ(a−θ), and the attention cost functional c :∆Θ→R is given by c(ν) :=
ν⊤π+ (ν−µ)⊤Π(ν−µ), where µ ∈∆Θ is the prior. This specification captures all finite-state,
quadratic models in which the agent optimally chooses her expectation a∗(ν) = ∑

θ∈Θνθθ of
the state (and moreover, faces a Blackwell-monotone cost of information). The formulation
of Section 2 corresponds to the case in which J = 1, γ = π = 0, Γ = 1, and Π = κIΘ for some
κ> 0, where IΘ is the identity matrix.

Simple computations show that

UA(ν)=UP (ν)− c(ν)= a∗(ν)⊤Γa∗(ν)−ν⊤Πν+h(ν)

for some affine h :∆Θ→ R. Define now the seminorms || · ||M on RJ via ||y||M :=
√

y⊤Γy and
|| · ||P on RΘ via ||x||M :=

p
x⊤Πx. Given two beliefs ν,ν′ ∈ ∆Θ, we can define a choice dis-

tance between them as ||Eν′θ−Eνθ||M = ||a∗(ν′)−a∗(ν)||M , and a psychological distance
as ||ν′−ν||P ; both of these formulae specialize to the forms given in our main model. Further
replicating the computations before Proposition 1, for ϵ ∈ [0,1],

1
2

d2

dϵ2UA(ν+ϵ(ν′−ν)) = ||Eν′θ−Eνθ||2M −||ν′−ν||2P .

Hence, the following generalization of Proposition 1 can be established.16

PROPOSITION 1*. In the generalized quadratic setting, a nonredundant policy p ∈ R(µ) is
IC if and only if

||Eν′θ−Eνθ||M ≥ ||ν′−ν||P ∀ν,ν′ ∈ supp(p). (5)

Moreover, if J = 1, and supp(p) = {ν1, . . . ,νN } is such that an := Eνn(θ) satisfy a1 ≤ ·· · ≤
aN , then it suffices to verify (5) only for the case that ν = νn and ν′ = νn+1 for some
n ∈ {1, . . . , N −1}.

15. More precisely, the second derivative in condition (3) is independent of ϵ.
16. Moreover, if J = 1 and Γ is nonzero, then Corollary 1 applies, with an identical proof. To generalize to the

multidimensional-action case, one requires a more comprehensive notion of “the direction of an information
policy” that involves every pair of supported posteriors, not only consecutive ones. Adopting an analogous,
more stringent definition of an interior information policy—which in general makes the result less powerful by
ruling out a smaller family of information policies—an analogue Corollary 1 holds with an identical argument.
The analysis of Section 4 is, of course, specific to the fully parametric environment of that section.

17



A.2 Proof of Proposition 1

LEMMA 2. In the general quadratic model of Section A.1, for any ν,ν′ ∈ ∆Θ, the function
UA|co{ν,ν′} is convex [resp. strictly concave] if and only if ||Eν′θ−Eνθ||M ≥ [<]||ν′−ν||P . In
particular, in the model of Section 2, this ranking reduces to |Eν′θ−Eνθ| ≥ [<]

p
κ||ν′−ν||.

Proof. Given any ν ∈ ∆Θ, the agent’s first-order condition is clearly solved at a = a∗(ν) :=∑
θ∈Θνθθ, and the objective is concave in the chosen action because Γ is positive semidefinite.

Hence a∗(ν) is an optimal action. Therefore,

UA(ν) = UP (ν)− c(ν)

=
∫ {

γ(θ)− [a∗(ν)−θ]⊤Γ[a∗(ν)−θ]−π(θ)
}

dν(θ)−ν⊤Πν

=
∫ [

γ(θ)−θ⊤Γθ−π(θ)
]

dν(θ)+a∗(ν)⊤Γa∗(ν)−ν⊤Πν.

Now, for ν,ν′ ∈∆Θ and ϵ ∈ [0,1], we have

1
2

d2

dϵ2 UA(ν+ϵ(ν′−ν)) = 1
2

d2

dϵ2

{
a∗ (

ν+ϵ(ν′−ν)
)⊤
Γa∗ (

ν+ϵ(ν′−ν)
)− [

ν+ϵ(ν′−ν)
]⊤
Π

[
ν+ϵ(ν′−ν)

]}
= [

a∗(ν′)−a∗(ν)
]⊤
Γ

[
a∗(ν′)−a∗(ν)

]− (ν′−ν)⊤Π(ν′−ν)

= ||a∗(ν′)−a∗(ν)||2M −||ν′−ν||2P .

The general result follows. Finally, to specialize the result to our main model, note that
|| · ||M = | · | and || · ||P =p

κ|| · || in this case.

Let us now prove Proposition 1*, from which Proposition 1 follows directly.
Proof of Proposition 1*. Fixing any nonredundant p ∈ R(µ), we will first show that the
following are equivalent:

1. p is IC.

2. UA|co{ν′,ν′′} is weakly convex for all ∀ν′,ν′′ ∈ supp(p).

3. ||Eν′′θ−Eν′θ||M ≥ ||ν′′−ν′||P for all ν′,ν′′ ∈ supp(p).

That (2) ⇐⇒ (3) follows directly from Lemma 2, so we now turn to showing (1) ⇐⇒ (2).
(1) ⇒ (2): Suppose condition (2) does not hold. As UA is quadratic, there then exist

ν′,ν′′ ∈ supp(p) such that UA|co{ν′,ν′′} is strictly concave. Define the finite-support random
posterior q ∈G(p) by

q(ν)=


0 : ν ∈ {ν′,ν′′}

p(ν′)+ p(ν′′) : ν= p(ν′)
p(ν′)+p(ν′′)ν

′+ p(ν′′)
p(ν′)+p(ν′′)ν

′′

p(ν) : otherwise.
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In words, q is a random posterior that replaces ν′,ν′′ in supp(p) with their conditional mean.
By construction, p ≻B q, so that q ∈ G(p). Also, since UA|co{ν′,ν′′} is strictly concave, by
Jensen’s inequality, ∫

∆Θ
UA dq >

∫
∆Θ

UA dp.

This implies that p ∉G∗(p), i.e. (1) does not hold.

(2) ⇒ (1): Suppose (2) holds. By Claims OA.4 and OA.6 of Lipnowski, Mathevet, and Wei
(2020), there exists some Blackwell-maximal element q∗ ∈G∗(p). Since Θ is finite and S :=
supp(p) is affinely independent, we know that S is finite, and that the map β :∆S → co(S),
defined by p 7→∑

ν∈S p(ν)ν, is bijective.
Assume (toward a contradiction) that ∃ν∗ ∈ supp(q∗)\ S. As β is bijective and ν∗ ∉ S, we

know that β−1(ν∗) is not a point mass. So ∃ν′,ν′′ ∈ S and ε> 0 such that β−1(ν′|ν∗),β−1(ν′′|ν∗)>
2ε. By continuity, there exists a neighborhood N ⊆ co(S) of ν∗ such that:

β−1(ν′|ν),β−1(ν′′|ν)> ε,∀ν ∈ N.

Note that q∗(N)> 0 as ν∗ ∈ supp(q∗).
Define f+, f− :∆Θ→∆Θ by ν 7→ ν+ε(ν′−ν′′)1ν∈N and ν 7→ ν−ε(ν′−ν′′)1ν∈N , respectively.17

Also, define
q′ := 1

2 q∗ ◦ f −1
+ + 1

2 q∗ ◦ f −1
− ∈∆∆Θ.

By construction, q′ ≻B q∗. Moreover, since UA|co{ν′,ν′′} is convex, Lemma 2 tells us that
UA|co{ν±ε(ν′−ν′′)} is also convex, ∀ν ∈ N. This implies∫

∆Θ
UA dq′ ≥

∫
∆Θ

UA dq∗,

so that q′ ∈ G∗(p), contradicting maximality of q∗. Therefore, supp(q∗) ⊆ S, i.e. q∗ ∈ ∆S.
But β is bijective and β(q∗)=µ=β(p), so that q∗ = p. Hence, p ∈G∗(p), i.e. (1) holds.

Finally, having proved the three-way equivalence, we now specialize the model to the
case of J = 1. Because || · ||M is a seminorm on R, it follows that || · ||M =λ| · | for some λ ∈R+.
Let N := |supp(p)|, and write supp(p) = {ν1, . . . ,νN }, where an := a∗(νn) satisfy a1 ≤ ·· · ≤ aN .
Suppose ||an+1 −an||M ≥ ||νn+1 −νn||P for every n ∈ {1, . . . , N −1}.

Fixing some i, j ∈ {1, . . . , N} with i < j, we now argue that ||a j−ai||M ≥ ||ν j−νi||P . Consider
two cases. First, suppose a j = ai. In this case, every n ∈ {i, . . . , j−1} has ai ≤ an ≤ an−1 ≤ a j,
so that ||an+1 −an||M = 0, and hence ||νn+1 −νn||P = 0. Because ν j −νi =∑ j−1

n=i(ν
n −νn−1), the

triangle inequality yields ||ν j −νi||P ≤∑ j−1
n=i ||νn−νn−1||P , giving the desired inequality. Now

17. Notice that since ν∗ ∉ S, one can choose ε and N small enough to ensure f+ and f− are well-defined
∆Θ-valued maps.
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focus on the complementary case that a j > ai. Direct computation then shows:

ν j −νi

a j −ai = 1∑ j−1
ℓ=i (aℓ+1−aℓ)

j−1∑
n=i

(
νn+1 −νn)

=
j−1∑
n=i

[
an+1−an∑ j−1

ℓ=i (aℓ+1−aℓ)

(
νn+1 −νn

an+1 −an

)]

∈ co
{
νn+1 −νn

an+1 −an

} j−1

n=i
.

As a seminorm is convex, and therefore quasiconvex, it follows that∥∥∥∥ν j −νi

a j −ai

∥∥∥∥
P
≤ max
ℓ∈{i,..., j−1}

∥∥∥∥νℓ+1 −νℓ
aℓ+1 −aℓ

∥∥∥∥
P
≤λ,

and hence
∥∥ν j −νi∥∥

P ≤λ|a j −ai| = ∥∥a j −ai∥∥
M , as required.

Proof of Corollary 1. By Observation 1, we only need to show that any (nonredundant) policy
that is IC and interior cannot be an optimal attention outcome.18 Let p be a policy that is IC
and interior. By definition, there exists an alternative nonredundant policy p̃ with the same
direction as p such that p̃ ≻B p. Since the principal strictly prefers the agent to process
more information, we are done if p̃ is IC. But by Proposition 1, preserving the direction of
an IC information policy preserves IC.

B. ONLINE APPENDIX: PROOF OF PROPOSITION 2

In this Online Appendix, we provide the complete proof of Proposition 2, which charac-
terizes the optimal disclosure policy in the three-state model.

Information policies with two supported messages are called binary policies, and those
with three supported messages are called ternary policies. With three states, any nonre-
dundant, informative policy is either binary or ternary.

In what follows, we represent the belief space ∆Θ parametrically. Let

B = {
(a, z) ∈R2 : z ∈ [0,1], a ∈ [z−1,1− z]

}
.

For any (a, z) ∈B, let

ν(a,z) = zδ0 + 1− z+a
2

δ1 + 1− z−a
2

δ−1.

So ν(a,z) ∈∆Θ has a = Eθ∼ν(a,z)(θ) and z = ν(a,z)(0). By construction, the map (a, z) 7→ ν(a,z) is an

18. Note that the definition of an interior policy involves its direction, which is only defined for nonredundant
policies and which is distinct by definition for any two policies with different support size (see Section 3.3).
Hence, by definition, an interior policy is both nonredundant and informative.

20



affine bijection from B to ∆Θ. Under this representation, Dirac measures in ∆Θ are extreme
points of B: δ−1 = ν(−1,0), δ0 = ν(0,1), and δ1 = ν(1,0). Also, the prior satisfies µ= ν(aµ,µ0), where
aµ = µ1 −µ−1 and (aµ,µ0) ∈ int(B). Figure IV depicts the (a, z) representation of the belief
space.

For any distinct beliefs ν= ν(a,z) and ν′ = ν(a′,z′), let (∆a,∆z)= (a−a′, z− z′). Note that

|a−a′| ≥p
κ||ν−ν′||

⇐⇒ |a−a′| ≥p
κ

√
(z− z′)2 +

(
1− z+a

2
− 1− z′+a′

2

)2
+

(
1− z−a

2
− 1− z′−a′

2

)2

⇐⇒ κ≤ 2, ∆a ̸= 0, and
∣∣∣∣∆z
∆a

∣∣∣∣≤
√

2−κ
3κ

=: s∗(κ). (6)

By Proposition 1, a nonredundant p ∈R(µ) is IC, if and only if (6) holds for any two consecu-
tive messages in supp(p). Finally, we fix notation for line segments that form the boundary
of B: L := co{(0,1), (−1,0)}, R := co{(0,1), (1,0)} and D := co{(−1,0), (1,0)}.

(aµ,µ0) a

z

(−1,0)

(0,1)

(1,0)

RL

D

FIGURE IV: (a, z)-REPRESENTATION OF ∆Θ

CLAIM 1. Let p ∈ R(µ) \ {δµ} be nonredundant and IC, with support {ν(an,zn)}m
n=1 such that

a1 < ·· · < am. If (a1, z1) ∈ int(B) or (am, zm) ∈ int(B), then p is interior.

Proof. Suppose that (a1, z1) ∈ int(B). For sufficiently small ϵ > 0, interiority of (a1, z1)
implies that

(ã, z̃) := (a2, z2)+ (1+ϵ)(a1 −a2, z1 − z2) ∈B,

and {ν(ã,z̃), ν(a2,z2), . . . ,ν(am,zm)} is still affinely independent. There is then a mean-preserving
spread p̃ of p which is supported on {ν(ã,z̃), ν(a2,z2), . . . ,ν(am,zm)}.19 As z2−z̃

a2−ã = z2−z1

a2−a1 by con-
struction, p̃ has the same direction as p. Since p̃ is a mean-preserving spread of p, by
definition we have p̃ ≻B p, and so p is interior.

A symmetric argument proves that p is interior if (am, zm) ∈ int(B).

Below, we rule out ternary policies such that (when parametrized in B) the middle mes-
sage lies below the line segment between the two other messages.

19. To construct it, take a dilation on ∆Θ which fixes each of ν(a2,z2), ...,ν(am,zm) and splits ν(a1,z1) to a measure
with support {ν(ã,z̃), ν(a2,z2)}.
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CLAIM 2. Take any nonredundant ternary policy p ∈R(µ) with supp(p)= {
ν(a1,z1),ν(a2,z2),ν(a3,z3)

}
such that a1 < a2 < a3. If p is IC and

z2 ≤ a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3,

then p is not principal-optimal.

Proof. First, let us assume that z1 ≤ z3. Nonredundancy of p rules out the possibility that
z2 = a3−a2

a3−a1
z1 + a2−a1

a3−a1
z3; therefore,

z2 < a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3 ≤ z3.

Letting sℓ := z2−z1
a2−a1

and sr := z3−z2
a3−a2

, observe that

sr − sℓ = 1
a3−a2

z3 + 1
a2−a1

z1 −
(

1
a2−a1

+ 1
a3−a2

)
z2 = a3−a1

(a2−a1)(a3−a2)

[
a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3 − z2

]
> 0.

This implies sr > 0, because

(a2 −a1)sℓ+ (a3 −a2)sr = z3 − z1 ≥ 0.

Letting pi := p
(
ν(ai ,zi)

) ∈ (0,1) for i ∈ {1,2,3}, consider a small ϵ> 0, and define

(ã1, z̃1)= (a1, z1)

(ã2, z̃2)= (a2, z2 + p3ϵ)

(ã3, z̃3)= (a3, z3 − p2ϵ) .

All statements in what follows should be taken to mean, when ϵ> 0 is sufficiently small.
Applying Jensen’s inequality to the concave function 1−| · | ,

z2 < a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3 ≤ a3−a2
a3−a1

(1−|a1|)+ a2−a1
a3−a1

(1−|a3|)≤ 1−|a2|.

Combining this with z3 > z2 ≥ 0 tells us that (ã2, z̃2) , (ã3, z̃3) ∈ int(B). Next, define p̃ ∈∆∆Θ
to be the measure which puts mass pi on ν(ãi ,z̃i) for i ∈ {1,2,3}. Direct computation shows
that p̃ ∈R(µ) and that p̃ generates exactly the same action distribution as p. Now, to show
that p̃ is IC, observe that z̃3−z̃2

ã3−ã2
= z̃3−z̃2

a3−a2
∈ [0, sr] and z̃2−z̃1

ã2−ã1
= z̃2−z̃1

a2−a1
∈ [sℓ, sr]. So p̃ is order-IC

if p is. Appealing to Proposition 1 says p̃ is IC. Finally, since (ã3, z̃3) ∈ int(B), Claim 1 tells
us p̃ is interior. Hence, we have constructed an interior and incentive-compatible p̃ which
generates the same action distribution as p. Thus, by Corollary 1, p is not principal-optimal.

A symmetric argument proves the same result in the case z1 ≥ z3.
Without loss of generality, we focus hereafter on the case that aµ ≥ 0.

CLAIM 3. Suppose a nonredundant p ∈ R(µ) is IC. If there exists ν(a,z) ∈ supp(p) such that
(a, z) ∈ relint(D), then p is not principal-optimal.
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Proof. Say p has support {ν(a1,z1), . . . ,ν(am,zm)} such that a1 < ·· · < am and m ∈ {1,2,3}. First,
let us assume z1 ≤ zm.

If m = 1, then the result follows from µ0 > 0. If m = 3 and z2 ≤ a3−a2
a3−a1

z1+ a2−a1
a3−a1

z3, then the
result follows from Claim 2. We focus on the case that m ∈ {2,3}; z1 = 0; and if m = 3, then
z2 > a2−a1

a3−a1
z3.

Letting pi := p
(
ν(ai ,zi)

) ∈ (0,1) for i ∈ {1, . . . ,m}, consider a small ϵ> 0 and, define,

(ãi, z̃i)=


(a1, z1 + p2ϵ) i = 1

(a2, z2 − p1ϵ) i = 2

(ai, zi) otherwise.

All statements in what follows are taken to mean, when ϵ> 0 is sufficiently small.
That z2 > 0 and (a1, z1) ∈ relint(D) imply (ã1, z̃1) , (ã2, z̃2) ∈ int(B). Defining p̃ ∈ ∆∆Θ to

be the measure which puts mass pi on ν(ãi ,z̃i) for i = 1, . . . ,m, observe that p̃ ∈ R(µ) and
that p̃ generates exactly the same action distribution as p. Just as in the proof of Claim
2, an appeal to Proposition 1, Claim 1, and Corollary 1 means we need only show that p̃ is
order-IC.

But see that z̃2−z̃1
ã2−ã1

= z2−z1−(p1+p2)ϵ
a2−a1

∈
[
0, z2−z1

a2−a1

]
. Moreover, in the ternary case, z2−z1

a2−a1
<

z3−z2
a3−a2

because z2 > a2−a1
a3−a1

z3, so that z̃3−z̃2
ã3−ã2

= z3−z2+p2ϵ
a3−a2

∈
[

z2−z1
a2−a1

, z3−z2
a3−a2

]
. The result follows.

A symmetric argument proves the same result in the case z1 ≥ z3.

LEMMA 3. Take any nonredundant binary policy p ∈ R(µ) with supp(p) = {
ν(a1,z1),ν(a2,z2)

}
such that a1 < a2. Suppose (p, p) is a solution to (1) (i.e. p is an optimal attention
outcome). Then,

1. (a1, z1) ∈ L, (a2, z2) ∈ R;

2.
∣∣∣ z2−z1

a2−a1

∣∣∣≤ s∗(κ)

Proof. Claims 1 and 3 imply that (a1, z1), (a2, z2) ∈ L∪R; that p ∈ R(ν(aµ,µ0)) and (aµ,µ0) ∈
int(B) then imply part (1). Part (2) follows from Proposition 1 and equation (6).

LEMMA 4. Suppose 1
2 < κ< 2. Take any nonredundant ternary policy p ∈R(µ) with supp(p)={

ν(a1,z1),ν(a2,z2),ν(a3,z3)
}

such that a1 < a2 < a3. Suppose (p, p) is a solution to (1) (i.e. p is
an optimal attention outcome). Then,

1. (a2, z2) ∈ int(B), (a1, z1) ∈ L, (a3, z3) ∈ R;

2. z2−z1
a2−a1

= s∗(κ), z3−z2
a3−a2

=−s∗(κ).

Proof. Since p is nonredundant and IC, Claims 1 and 3 imply that (a1, z1), (a3, z3) ∈ L∪R.
As s∗(κ) < 1 when κ > 1

2 , it cannot be (given Proposition 1) that L contains two distinct
beliefs in the support of p; and similarly for R. This implies that (a1, z1) ∈ L, (a3, z3) ∈ R,
and (a2, z2) ∈B \ (L∪R). But Claim 3 rules out (a2, z2) ∈ D as well. This delivers part (1).
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Now we prove part (2). To start, it follows from Proposition 1 and equation (6) that∣∣∣ z2−z1
a2−a1

∣∣∣ ,
∣∣∣ z3−z2

a3−a2

∣∣∣≤ s∗(κ).

We now establish that
∣∣∣ z2−z1

a2−a1

∣∣∣ = ∣∣∣ z3−z2
a3−a2

∣∣∣ = s∗(κ). Assume (toward a contradiction) that

this does not hold. Let us first assume
∣∣∣ z2−z1

a2−a1

∣∣∣< s∗(κ). Consider a small ϵ> 0, and define the
three vectors,

(ã1, z̃1)= (a1, z1)

(ã2, z̃2)= (1+ϵ) (a2, z2)−ϵ (a3, z3)

(ã3, z̃3)= (a3, z3) .

Taking ϵ > 0 to be sufficiently small, {(ãi, z̃i)}3i=1 will be three affinely independent vectors,

all in B, whose convex hull contains (0,µ0); and
∣∣∣ z̃2−z̃1

ã2−ã1

∣∣∣< s∗(κ). There is therefore a unique

p̃ ∈ R(µ) whose support is {(ãi, z̃i)}3i=1, and p̃ is order-IC, since
∣∣∣ z̃3−z̃2

ã3−ã2

∣∣∣ = ∣∣∣ z3−z2
a3−a2

∣∣∣ ≤ s∗(κ).
Proposition 1 guarantees that p̃ is IC. But, by construction, the action distribution induced
by p̃ is a strict mean-preserving spread of that induced by p. Therefore, by Observation 1,
p is not optimal, a contradiction.

A symmetric argument derives the same contradiction in the case
∣∣∣ z3−z2

a3−a2

∣∣∣< s∗(κ). There-

fore, we have
∣∣∣ z2−z1

a2−a1

∣∣∣= ∣∣∣ z3−z2
a3−a2

∣∣∣= s∗(κ).
Finally, nonredundancy implies that z2−z1

a2−a1
̸= z3−z2

a3−a2
, and Claim 2 rules out the possibility

that z2−z1
a2−a1

< 0< z3−z2
a3−a2

. Part (2) then follows.

We define three special information policies that will be used in the coming proofs.

• The “full disclosure” policy pF is such that supp(pF )= {ν(−1,0),ν(0,1),ν(1,0)}

• The “no information” policy pN is such that supp(pN)= {µ}

• The orthogonal policy pO is such that supp(pO)= {ν(µ0−1,µ0),ν(1−µ0,µ0)}

The above lemmas can be combined into the following claim, which reduces our search
for optimal attention outcomes to a single two-dimensional problem.

CLAIM 4. Suppose 1
2 < κ < 2, and suppose the nonredundant policy p ∈ R(µ) is an optimal

attention outcome. Then there exist (a1, z1), (a2, z2), (a3, z3) ∈B such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s∗(κ)(a2 −a1), z3 − z2 =−s∗(κ)(a3 −a2);

• p{ν(a1,z1),ν(a2,z2),ν(a3,z3)}= 1.

Proof. As κ ≤ 2, the policy pO is IC, generating strictly higher principal payoffs than no
information. So p must be informative. Being nonredundant, it is either ternary or binary.

In the case that p is ternary, Lemma 4 delivers the result.
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In the remaining case, p has binary support
{
ν(a1,z1),ν(a3,z3)

}
, where (a1, z1), (a3, z3) ∈ B

with a1 < a3. Lemma 3 then tells us that (a1, z1) ∈ L, (a3, z3) ∈ R, and
∣∣∣ z3−z1

a3−a1

∣∣∣ ≤ s, where

s := s∗(κ). Moreover, s ∈ (0,1) because 1
2 < κ< 2.

Now, the line of slope s through (a1, z1) and the line of slope −s through (a3, z3) have
different slopes (since s > 0), so that there they have a unique intersection point (a2, z2) ∈R2.
To prove the claim, then, all that remains is to show is that a1 ≤ a2 ≤ a3 and (a2, z2) ∈B.

Define, for ã2 ∈R, the gap g(ã2)= [z3−s(ã2−a3)]−[z1+s(ã2−a1)], which strictly decreases
in ã2, so that g−1(0) = {a2}. Since

∣∣∣ z3−z1
a3−a1

∣∣∣ ≤ s, g(a3) ≤ 0 ≤ g(a1). The intermediate value
theorem then says that a2 ∈ [a1,a3].

As s ≤ 1, a2 ≥ a1, and (a1, z1) lies (weakly) below the line containing L, it follows that
(a2, z2) lies below that line as well. As s ≤ 1, a2 ≤ a3, and (a3, z3) lies (weakly) below the line
containing R, it follows that (a2, z2) lies below that line as well. As s ≥ 0, a2 ≥ a1, and (a1, z1)
lies (weakly) above the line containing D, it follows that (a2, z2) lies above that line as well.
Therefore (a2, z2) ∈B.

LEMMA 5. If 1
2 < κ < 2, then there exists an optimal attention outcome p such that one of

the following holds

• p is binary: supp(p)= {ν(a1,z1), ν(a2,z2)} for some (a1, z1) ∈ L, (a2, z2) ∈ R.

• p is ternary with critical slopes and support containing ν(1,0):20 supp(p)= {ν(a1,z1), ν(a2,z3), ν(1,0)}
for some (a1, z1) ∈ L, (a2, z2) ∈ int(B) with z2−z1

a2−a1
= s = z2

1−a2

Moreover, policies of the second form exist if and only if s∗(κ)> µ0
1−aµ

.

Proof. Here, s := s∗(κ) ∈ (0,1) because 1
2 < κ< 2.

Define the set T ⊆R6 of tuples ((ai, zi))3
i=1 ⊆ B3 such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s(a2 −a1), z3 − z2 =−s(a3 −a2);

• (aµ,µ0) ∈ co{(a1, z1), (a2, z2), (a3, z3)}.

As s > 0, it follows that every element t ∈ T has {t1, t2, t3} an affinely independent sub-
set of B.21 Given that (aµ,µ0) ∈ co{t1, t2, t3}, it follows that there is a unique pT

t ∈ R(µ)∩
∆{νt1 ,νt2 ,νt3}. The policy pT

t is IC by Proposition 1. Moreover, Claim 4 tells us that any
nonredundant optimal attention outcome is of this form. Accordingly, we can reformulate
the principal’s problem as maxt∈T

∫
∆ΘUP dpT

t .
Toward a parametrization of T , let A := {(a1,a2) : t = (a1, z1,a2, z2,a3, z3) ∈T }.
Given t = (a1, z1,a2, z2,a3, z3) ∈T , we can infer the following:

20. Recall our normalization that aµ ≥ 0.
21. In the extreme case where a2 = a1 (or a2 = a3), (a2, z2) and (a1, z1) (or (a2, z2) and (a3, z3)) collapse to one

point, so that {t1, t3} is still an affinely independent subset of B.
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• That (a1, z1) ∈ L implies z1 = 1+a1.

• Then, z2 = z1 + s(a2 −a1)= 1+ (1− s)a1 + sa2.

• Finally, (a3, z3) belongs both to R (so that z3 = 1−a3) and to the line of slope −s through
(a2, z2)—uniquely pinning it down as these two lines have different slopes. Direct
computation then shows that (a3, z3)= (−a1 − 2s

1−s a2, 1+a1 + 2s
1−s a2).

So, for any (a1,a2) ∈R2, let

t(a1,a2) := (a1, 1+a1, a2, 1+ (1− s)a1 + sa2, −a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2) ∈R6.

Consistent with the previous notation, let

t1(a1,a2)= (a1, 1+a1),

t2(a1,a2)= (a2,1+ (1− s)a1 + sa2),

t3(a1,a2)= (−a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2).

The above derivations show that T = {t(a1,a2)}(a1,a2)∈A . Hence, we can view the principal’s
problem as max(a1,a2)∈A

∫
∆ΘUP dpT

t(a1,a2).
Now we consider two cases separately.

• If (a1,a2) ∈A and t2(a1,a2) ̸= t3(a1,a2) (i.e. a2 ̸= −1−s
1+s a1), then

a1 (1− s)+a2 (1+ s) ̸= 0.

Moreover, a1 < a2.22 Therefore, given (a1,a2) ∈A , the following three numbers are all
well-defined:

p2(a1,a2) := a1(a1 +1−µ0)(1− s)+a2(2a1 +1−µ0 −aµ)s
−s(a2 −a1) [a1 (1− s)+a2 (1+ s)]

,

p3(a1,a2) := (1− s)
[
saµ+ (1− s)a1 + (1−µ0)

]
−2s [a1 (1− s)+a2 (1+ s)]

,

p1(a1,a2) := 1− p2(a)− p3(a).

Observe that p1(a)+p2(a)+p3(a)= 1 and (by direct, tedious computation)
∑3

i=1 pi(a)(ai, zi)=
(aµ,µ0). The affine independence property of {ti(a)}3i=1 then tells us that pT

t(a) =
∑3

i=1 pi(a)δνti (a) .

Now, the principal objective can be expressed (by direct, more tedious computation)

22. This is because, if a1 = a2, then (a1, z1) = (a2, z2) = (0,1). But then, the fact that (a3, z3) ∈ R implies that
(aµ,µ0) ∈ R, contradicting (aµ,µ0) ∈ int(B).
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as:23∫
∆Θ

UP dpT
t(a1,a2) +Vθ∼µ(θ)+a2

µ = Eν∼pT
t(a1,a2)

[a∗(ν)2]

= p1(a1,a2)a2
1 + p2(a1,a2)a2

2 + p3(a1,a2)
(−a1 − 2s

1−s a2
)2

= a2
1 −

a2
1 + (1−µ0)a1

s
−

(
2a1 + 1−µ0

1− s
+ 2s−1

1− s
aµ

)
a2.

(7)

• If (a1,a2) ∈A and t2(a1,a2)= t3(a1,a2) (i.e. a2 =−1−s
1+s a1), that (aµ,µ0) ∈ co{t1(a), t2(a)},

t1(a) ∈ L and t2(a) ∈ R imply that

(a1,a2)=
(
−1−µ0 + saµ

1− s
,
1−µ0 + saµ

1+ s

)
,

pT
t(a1,a2)(νt1)= 1− s

2
1−µ0 −aµ
1−µ0 + saµ

,

pT
t(a1,a2)(νt2)= 1+ s

2
1−µ0 +aµ
1−µ0 + saµ

.

The value of the principal’s objective is now∫
∆Θ

UP dpT

t
(
− 1−µ0+saµ

1−s ,
1−µ0+saµ

1+s

)+Vθ∼µ(θ)+a2
µ = p1

(
−1−µ0+saµ

1−s

)2+p2

(
1−µ0+saµ

1+s

)2 = (1−µ0)2−s2a2
µ

1−s2 ,

which one can directly verify is consistent with the value of equation (7) at (a1,a2) =(
−1−µ0+saµ

1−s , 1−µ0+saµ
1+s

)
.

Therefore, equation (7) summarizes the principal’s payoff for all (a1,a2) ∈ A . Observe
that this objective is affine in a2. But, t(·) being continuous and T being compact, the set of
a2 such that (a1,a2) ∈ A is (for fixed a1) a compact set of real numbers. We may therefore
find a principal-optimal attention outcome by restricting attention to the case that a2 is the
largest or smallest possible number for which (a1,a2) ∈ A . Letting A ∗ ⊆ A be the set of
pairs with this property, we can view the principal’s problem as

max
(a1,a2)∈A ∗

∫
∆Θ

UP dpT
t(a1,a2).

What does pT
t(a) look like if (a1,a2) ∈A ∗? As t(·) is continuous, any (a1, z1,a2, z2,a3, z3) ∈

T with (a3, z3) ∈ relint(R), (a2, z2) ∈ int(B) and µ0 ∈ int
(
co{(ai, zi)}3i=1

)
cannot have (a1,a2) ∈

A ∗. The reason is that, from the definition of T , it would then contain t(a1,a2 ± ϵ) for

23. The “Vθ∼µ(θ)+a2
µ” term is an irrelevant constant, which we add for convenience. The first equality follows

directly from Observation 1.
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sufficiently small ϵ. So, if (a1,a2) ∈ A ∗, then (a3, z3) = (1,0),24 or (a2, z2) belongs to the
boundary of B, or µ0 belongs to the boundary of co{(ai, zi)}3i=1.

If (a3, z3)= (1,0), then we have established part (ii) of this lemma.
If µ0 belongs to the boundary of co{(ai, zi)}3i=1, it must be that pi(a1,a2) = 0 for some i,

then pT
t(a) has binary support.

If (a2, z2) belongs to the boundary of B, since a1 < a2 and 0 < s < 1, it cannot be that
a2 ∈ L∪D. Since −s ̸= −1, it can only be that (a2, z2) ∈ R if a2 = a3 = −a1 − 2s

1−s a2, i.e. if
a2 =−1−s

1+s a1. But then pT
t(a) also has binary support.

So any (a1,a2) ∈ A ∗ has pT
t(a) either binary, or ternary with ν(1,0) in the support (and

critical slopes), and the result follows.
Finally, for any t ∈ R6 s.t. (a3, z3) = (1,0), (a1, z1) ∈ L and z2−z1

a2−a1
= s = z2

1−a2
, we have

(aµ,µ0) ∈ int[co{(a1, z1), (a2, z2), (a3, z3)}] if and only if s > µ0
1−aµ

. So if s ≤ µ0
1−aµ

, either t ∉ T

or pT
t is binary; while if s > µ0

1−aµ
, pT

t is of the second form in this lemma. (See Figures V
and VI for illustration.) The last part of Lemma 5 follows.

Graphically, when s > µ0
1−aµ

, for any given a1, varying a2 leads to policies depicted in

Figure V (following the notation of Lemma 5’s proof). On the other hand, when s ≤ µ0
1−aµ

, any
(a1,a2) ∈A ∗ leads to a binary policy, as depicted in Figure VI.

µ

a

z

(a1,a2) ∈A ∗

µ

a

z

(a1,a2) ∉A ∗

µ

a

z

(a1,a2) ∈A ∗

FIGURE V: WHEN s > µ0
1−aµ

, FOR A FIXED a1, VARYING a2 SUCH THAT (a1,a2) ∈A .

µ

a

z

(a1,a2) ∈A ∗

µ

a

z

(a1,a2) ∉A ∗

µ

a

z

(a1,a2) ∈A ∗

FIGURE VI: WHEN s ≤ µ0
1−aµ

, FOR A FIXED a1, VARYING a2 SUCH THAT (a1,a2) ∈A .

Proof of Proposition 2. We will find a nonredundant optimal attention outcome, which
exists by Lemma 1. Note that a nonredundant p is an optimal attention outcome, if and
only if it is IC and principal-optimal, if and only if (p, p) is a solution to (1).

24. It cannot be that (a3, z3)= (0,1) because aµ ≥ 0 and (aµ,µ0) ∈ int(B).
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If κ≤ κ1 = 1
2 , then s∗(κ) ≥ 1. Note that the support supp(pF ) of the full disclosure policy

is {ν(−1,0),ν(0,1),ν(1,0)}. So by Proposition 1 and condition 4, pF is IC. Since pF ⪰B q for all
q ∈R(µ) and UP (ν) is convex, by Jensen’s inequality

(
pF , pF)

is a solution to (1), so pF is an
optimal attention outcome, and part (1) of Proposition 2 follows.

If κ > κ4 = 2, by equation 4 any nonredundant information policy with more than one
messages is not IC. Therefore, the “no information” policy pN is the only nonredundant IC
policy, and so is the solution to (2). Then by Lemma 1,

(
pN , pN)

is a solution to (1), so pN is
an optimal attention outcome, and part (5) of Proposition 2 follows.

If κ = κ4 = 2, then s∗(κ) = 0. Given equation 4, then, any nonredundant p ∈ R(µ) must
have p{ν(a,z) : (a, z) ∈ B, z = µ0}. But pO is IC too, and pO ⪰B p for such p. As UP is convex,
it follows that pO is an optimal attention outcome. For this value of κ, the content of part
(4) of Proposition 2 follows.

Henceforth, we consider the remaining case that κ ∈ (κ1,κ4)= (1
2 ,2

)
, collectively covering

parts (2), (3), and (4)—excluding the special case of κ = κ4—of the proposition. Here, s :=
s∗(κ) ∈ (0,1). In this case, Lemma 5 applies, telling us that there is an optimal attention
outcome p∗ that has one supported belief on each of L and R, and is either ternary with
support containing ν(1,0) (with slopes between adjacent beliefs equal to s) or binary.

• If p∗ is binary, then p∗ has support {ν(a1,z1), ν(a2,z2)} for some distinct (a1, z1) ∈ L and
(a2, z2) ∈ R. Let s̃ := z2−z1

a2−a1
. The fact that (a1, z1) ∈ L and (a2, z2) ∈ R implies that

s̃ ∈
[
− µ0

1−aµ
, µ0

1+aµ

]
. We also know that s̃ ∈ [−s, s] by Lemma 3.

Given such s̃,

(a1, z1)=
(
−1−µ0 + s̃aµ

1− s̃
,
µ0 − s̃(1+aµ)

1− s̃

)
and

(a2, z2)=
(1−µ0 + s̃aµ

1+ s̃
,
µ0 + s̃(1−aµ)

1+ s̃

)
are the unique intersections of L and R, respectively, with the line of slope s̃ through
(aµ,µ0). Next, Bayes-plausibility tells us that

p∗{ν(a1,z1)}=
1− s̃

2
1−µ0 −aµ
1−µ0 + s̃aµ

p∗{ν(a2,z2)}=
1+ s̃

2
1−µ0 +aµ
1−µ0 + s̃aµ
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Therefore, the principal’s objective can be written as (appealing to Observation 1)∫
∆Θ

UP dp∗ =Vµ∼p∗
[
a∗(ν)

]−Vθ∼µ(θ)

=
∫
∆Θ

(
a∗(ν)−aµ

)2 dp∗(ν)−Vθ∼µ(θ)

= 1−s̃
2

1−µ0−aµ
1−µ0+s̃aµ

(
−1−µ0+aµ

1−s̃

)2 + 1+s̃
2

1−µ0+aµ
1−µ0+s̃aµ

(
1−µ0−aµ

1+s̃

)2 −Vθ∼µ(θ)

= (1−µ0+aµ)(1−µ0+aµ)
2(1−µ0+s̃aµ)

(
1−µ0+aµ

1−s̃ + 1−µ0−aµ
1+s̃

)
−Vθ∼µ(θ)

=
(1−µ0)2 −a2

µ

1− s̃2 −Vθ∼µ(θ). (8)

As 0 ≤ aµ < 1−µ0 (because (aµ,µ0) ∈ int(B)), the above objective is strictly increasing
in |s̃|, so p∗ being an optimal attention outcome implies that |s̃| =min{s, µ0

1−aµ
}.

• If there is no binary optimal attention outcome, then p∗ is ternary with support
{ν(a1,z1), ν(a2,z2), ν(1,0)}, (a1, z1) ∈ L and z2−z1

a2−a1
= s = z2

1−a2
. By the last part of Lemma

5, this is only possible when s > µ0
1−aµ

. Recall that

p2(a1,a2)= a1(a1 +1−µ0)(1− s)+a2(2a1 +1−µ0 −aµ)s
−s(a2 −a1) [a1 (1− s)+a2 (1+ s)]

,

t3(a1,a2)= (−a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2).

So, that t3 = (1,0) and p2(a1,a2)≥ 0 imply that a2 =−1−s
2s (1+a1) and a1 ∈

[
−1,−1−µ0−aµ

1−µ0+aµ

]
;

and moreover, any such pair has (a1,a2) ∈A . Substituting into (7) yields∫
∆Θ

UP dp∗+Vθ∼µ(θ)=−a2
µ+a2

1 −
a2

1 + (1−µ0)a1

s
+

(
2a1 + 1−µ0

1− s
+ 2s−1

1− s
aµ

)
1− s
2s

(1+a1)

=−a2
µ+

1
2s

[
a1(1−aµ+µ0 −2s(1−aµ))+1−µ0 −aµ+2saµ

]
. (9)

Note that the above objective function is affine in a1. Note also that when a1 =
−1−µ0−aµ

1−µ0+aµ
, p2(a1,a2) = 0, so that the binary policy with slope − µ0

1−aµ
is obtained. Since,

by hypothesis, no binary policy is an optimal attention outcome, a1 must be optimally
set to −1, i.e. s > 1−aµ+µ0

2(1−aµ) .

Now, we consider various subcases for the value of κ, and find an optimal policy using
payoffs computed in (8) and (9).

• First, suppose κ ∈ (κ1,κ2] so that 1−aµ+µ0
2(1−aµ) ≤ s < 1. In (9), it is optimal to set a1 = −1

because s ≥ 1−aµ+µ0
2(1−aµ) . But since setting a1 = −1−µ0−aµ

1−µ0+aµ
results in an optimal binary

policy (i.e. a binary policy that maximizes the principal’s utility among all IC binary
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policies),25 Lemma 5 then implies that the resulting ternary policy by setting a1 =−1
is an optimal attention outcome. This proves part (2) of the proposition.

• Next, suppose κ ∈ [κ2,κ3], so that µ0
1−aµ

≤ s ≤ 1−aµ+µ0
2(1−aµ) . In (9), it is optimal to set

a1 = −1−µ0−aµ
1−µ0+aµ

because s ≤ 1−aµ+µ0
2(1−aµ) , which, as noted before, results in a binary pol-

icy. This means that any ternary policy with ν(1,0) in the support (and critical slopes)
is dominated by a binary policy. Then, by Lemma 5, we know that an optimal binary
policy is optimal. That is, the binary policy with slope |s̃| = min{s, µ0

1−aµ
} = µ0

1−aµ
is an

optimal attention outcome. This proves the part (3) of the proposition.

• Finally, suppose κ ∈ (κ3,κ4) so that 0 < s < µ0
1−aµ

. Then by Lemma 5, we know that

an optimal binary policy is optimal.26 That is, the binary policy with slope |s̃| =
min{s, µ0

1−aµ
} = s is an optimal attention outcome. This proves the remainder of part

(4) of the proposition.

All that remains is the uniqueness result. Let us show that there is a unique (up to
reflection) optimal attention outcome whenever κ ̸= κ2.

If κ ≤ 1
2 , then full information is IC, and it is the unique minimizer of p 7→ ∫

∆ΘUP dp
over R(µ), and so is the unique optimal attention outcome. If κ > 2, then no information
is uniquely IC, and so is the unique optimal attention outcome. If κ = 2, then every IC
information policy is supported on {ν(a,z) : (a, z) ∈ B, z = µ0 }, a convex set over which UP

is strictly convex; pO is therefore (being a unique ⪰B-maximum over all such information
policies) the unique optimal attention outcome.

Now, we focus on the remaining case of 1
2 < κ < 2, and let p∗ be an arbitrary optimal

attention outcome.
Letting P ∗ be the set of nonredundant optimal attention outcome, Claims OA.7 and

OA.9 of Lipnowski, Mathevet, and Wei (2020) tell us that p∗ ∈ co(P ∗). As UA is strictly
concave on L (since s < 1) and p∗ is IC, it must be that the positive measures p∗(·∩L) and
p∗(·∩R) both have support of size at most one. But, by Lemma 5, any element of co(P ∗)\P ∗

would violate this property. Therefore p∗ ∈P ∗, i.e. it is nonredundant.
We now show that p∗ is unique (up to reflection) unless κ = κ2. To this end, we need

to rule out both multiplicity within the class of policies of the form guaranteed by Lemma
5, and existence of an optimal nonredundant policy outside of that class. The first part
of the current proof already shows that within that class, the optimal attention outcome
is unique unless κ = κ2. We now argue that, as long as κ ̸= κ2, no nonredundant policy
outside that class can be an optimal attention outcome. Following the notation of Lemma
5’s proof, take any (a1,a2) ∈A \A ∗, and assume, for a contradiction, that pT

t(a) is an optimal

25. Note that now min{s, µ0
1−aµ

} = µ0
1−aµ

, and the resulting binary policy by setting a1 = − 1−µ0−aµ
1−µ0+aµ

has slope

− µ0
1−aµ

.
26. Note that the last part of Lemma 5 says that policies of the second form (ternary policies with ν(1,0) in

the support and critical slopes) do not exist when s < µ0
1−aµ

, so we can only focus on binary policies.
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attention outcome. As ã2 7→ ∫
∆ΘUP dpT

t(a1,ã2) was shown to be affine, this can only be true
if the affine function is constant, so that pT

t(a) generates the same payoff to the principal
as pT

t(a1,a2) and pT
t(a1,ā2) do, where (a1,a2), (a1, ā2) ∈ A ∗ with a2 < a2 < ā2. In particular,

both pT
t(a1,a2) and pT

t(a1,ā2) are also optimal attention outcomes. Consider alternative cases of

κ ∈ (1
2 ,2)\{κ2}= (κ1,κ2)∪ (κ2,κ3)∪ [κ3,κ4).

• If κ ∈ (κ1,κ2)∪ (κ2,κ3), then pT
t(a1,a2) is ternary and pT

t(a1,ā2) is binary. But, as we ar-
gued above, the optimal ternary attention outcome and the optimal binary attention
outcome are strictly payoff ranked for κ ̸= κ2. This is a contradiction to pT

t(a1,a2) and

pT
t(a1,ā2) both being optimal attention outcomes.

• If κ ∈ [κ3,κ4), then both pT
t(a1,a2) and pT

t(a1,ā2) are binary, while one element in supp(pT
t(a1,a2))

is in int(B) (see the left panel of Figure VI for illustration). By Claim 1, pT
t(a1,a2) is not

principal-optimal, a contradiction to pT
t(a1,a2) being an optimal attention outcome.■
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