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Abstract

Information provision in games influences behavior by affecting agents’ be-

liefs about the state, as well as their higher-order beliefs. We first characterize

the extent to which a designer can manipulate agents’ beliefs by disclosing in-

formation. We then describe the structure of optimal belief distributions,

including a concave-envelope representation that subsumes the single-agent

result of Kamenica and Gentzkow (2011). This result holds under various

solution concepts and outcome selection rules. Finally, we use our approach

to compute an optimal information structure in an investment game under

adversarial equilibrium selection.
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1. Introduction

Monetary incentives, such as taxes, fines, wages, and insurance are ways of ma-

nipulating agents’ payoffs to incentivize a range of behaviors, from exerting effort

to risk-taking. In incomplete information environments, strategic transmission of

information may also be used as a tool to affect agents’ behavior, in this case by

manipulating their beliefs. Information design analyzes the latter, in a setting where

a designer commits to disclosing information to a group of interacting agents.

Under incomplete information, agents’ behavior depends, in part, on their beliefs

about the uncertain state of the world. For example, an investor’s belief about the

quality of a new technology influences his decision whether to invest or not in the

startup that launches it. However, his decision also depends on how likely he thinks

other investors are to fund the startup, which in turn depends on their own beliefs

about the state and other investors’ decisions. Thus, an agent’s beliefs about the

other agents’ beliefs about the state also affect his decision, as do his beliefs about

their beliefs about his beliefs about the state, and so on. These higher-order beliefs

are absent from the single-agent environment, but they are an important part of the

information design problem with multiple interacting agents.

This paper contributes to the foundations of information design in three ways.

First, we characterize the feasible distributions of agents’ beliefs that a designer can

induce through the choice of information structure. Information design is ultimately

an exercise in belief manipulation, whether it is explicitly modeled as such or solved

by way of incentive compatible distributions over actions and states. However, an

information designer cannot induce just any belief distribution she wishes to. In

the single-agent case, for example, the designer is constrained to distributions over

beliefs about the state that on average equal the prior, a condition known as Bayes

plausibility (Kamenica and Gentzkow (2011)). In the multi-agent case, an additional

requirement emerges: agents’ beliefs should be consistent with one another. We fur-

ther establish an equivalence between (Bayes plausible and consistent) distributions

of agents’ beliefs and distributions of the designer ’s beliefs, which is particularly

useful in applications.

Second, we represent the designer’s problem in a way that exploits the structure

of consistent belief distributions. We show that every consistent belief distribution

can be represented as a (convex) combination of more “basic” elements, themselves

belief distributions. Therefore, the problem of choosing an optimal information

structure is equivalent to choosing an optimal combination of such basic elements,

subject to Bayes plausibility. From this follows a two-step approach to the infor-

mation design problem: the first step optimizes among the basic elements only, and
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the second step optimally combines the elements selected in the first step subject

to Bayes plausibility. The latter step corresponds to the concavification of a value

function derived in the first step. Therefore, this representation subsumes the single-

agent result of Kamenica and Gentzkow (2011). This two-step decomposition can be

interpreted as optimizing over private information in the first step and then adding

an optimal public signal in the second step.

Third, the above results apply to a variety of solution concepts and equilibrium

selection rules. The choice of solution concept can address many problems in in-

formation design, in much the same way that it does in mechanism design. For

example, a designer may be concerned that agents only have bounded depths of

reasoning, that they can deviate in coalitions, or that they can communicate. A

designer may also want to hedge against the possibility that, when there are mul-

tiple outcomes (consistent with the solution concept), agents might coordinate on

the outcome most unfavorable to her. This can be achieved by choosing a robust

information structure, which maximizes the designer’s payoff under an adversarial

selection rule. Current methods have focused on Bayes Nash equilibrium (BNE) as

a solution concept and designer-preferred equilibrium selection.

We apply our approach to an investment game where the coordination motive is

a source of multiple equilibria under incomplete information, and the designer would

like to maximize investment. In this problem, as in other similar ones, the possibility

that agents coordinate on the equilibrium least preferred by the designer is a serious

issue. In response, the designer may want to choose the information structure that

maximizes investment probabilities in the worst equilibrium. Information design

under such adversarial equilibrium selection is outside the scope of existing methods.

We use our approach to compute the optimal information structure which takes on

a simple form: every agent either receives a private message that makes investing

uniquely optimal due to a combination of first- and higher-order beliefs, or receives

a public message that makes it common knowledge that the state is low, hence not

investing is uniquely optimal. The private messages create contagion à la Rubinstein

(1989), which we refer to as the bandwagon effect: one message induces a first-order

belief that is high enough to incentivize investment by itself, while all other messages

aim to cause investment by an induction argument that uses beliefs of incrementally

higher order.

The single-agent problem has been a rich subject of study since the influential

work of Kamenica and Gentzkow (2011). The standard problem is mathematically

analogous to Aumann and Maschler (1995), which studies a repeated game with

an informed player who exploits his knowledge against an uninformed opponent.1

1Other early contributions to single-agent information design include Brocas and Carrillo (2007)
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By contrast, the theory of information design in games is not as well understood.

Bergemann and Morris (2016) and Taneva (2019) formulate the Myersonian ap-

proach to Bayes Nash information design. This approach is based on a notion of

correlated equilibrium under incomplete information, Bayes correlated equilibrium

(BCE), which characterizes all possible BNE outcomes that could arise under all

information structures. The BCE approach elegantly avoids the explicit modeling

of belief hierarchies, and proves useful for solving information design problems by

means of linear programming. However, it fundamentally relies on BNE as a solution

concept and on selecting the designer-preferred equilibrium in case of multiplicity. In

contrast, our results develop the belief-based approach to information design, which

can be viewed as the multi-agent analogue to Kamenica and Gentzkow (2011)’s

single-agent formulation. Earlier works have studied the effects of public and pri-

vate information on equilibrium behavior, efficiency, and welfare (e.g., Vives (1988),

Morris and Shin (2002) and Angeletos and Pavan (2007)). More recent papers study

the optimal design of information in voting games (Alonso and Câmara (2016), Chan

et al. (2019)); dynamic bank runs (Ely (2017)); stress testing (Inostroza and Pavan

(2017)); auctions (Bergemann, Brooks, and Morris (2017)); contests (Zhang and

Zhou (2016)); or focus on public information in games (Laclau and Renou (2016)).

2. The Information Design Problem

A set N = {1, . . . , n} of agents interact in an uncertain environment. The variable

θ ∈ Θ describes the uncertain state of the world, where the set Θ is finite. Every

agent i ∈ N has a finite action set Ai and utility function ui : A × Θ → R,

where A =
∏
iAi. A priori, the agents only know that θ is distributed according to

µ0 ∈ ∆Θ, which is common knowledge. We refer to G = (Θ, µ0, N, {Ai}, {ui}) as

the base game.

A designer commits to disclosing information to the agents about the payoff

relevant state θ. This is modeled by an information structure (S, π), where

Si ⊆ S is the finite set of messages that agent i can receive, S =
∏
iSi is the set of

message profiles, and π : Θ → ∆(S) is the information map.2 In any state θ, the

message profile s = (si) is drawn according to π(s|θ) and agent i privately observes

si. An information structure can be thought of as an experiment concerning the

state, such as an audit, a stress test or a medical test. As is standard in information

and Rayo and Segal (2010) proposed models of single-agent information design, with binary state
space and sequential binary signals for the former, and optimal advertising about product attributes
for the latter.

2We restrict attention to finite message spaces, because it guarantees existence of a BNE or all
information structures. Any infinite set S would serve the purpose.
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design, this model assumes that the designer commits to the information structure

at a time when she does not know the realized state, but only knows its distribution

µ0.3 The information designer’s preferences are summarized by the payoff function

v : A×Θ→ R. Her objective is to maximize her expected payoff through the choice

of information structure.

The combination of information structure and base game, G = 〈G, (S, π)〉, con-

stitutes a Bayesian game in which agents play according to a solution concept

Σ(G) ⊆ {σ = (σi) |σi : Si → ∆Ai for all i}. The resulting outcomes are distribu-

tions over action profiles and states, represented by

OΣ(G) = {γ ∈ ∆(A×Θ) : there exists σ ∈ Σ(G) such that

γ(a, θ) =
∑

s σ(a|s)π(s|θ)µ0(θ) for all (a, θ)}.

Assume that OΣ is non-empty and compact-valued. Given that G is finite, this holds

when Σ is BNE, for example. For a fixed base game, we just write OΣ(S, π). When

OΣ contains multiple outcomes, the designer expects that one of them will happen,

which is described by a selection rule g : D ⊆ ∆(Θ×A) 7→ g(D) ∈ D. The worst

and the best outcomes are natural selection criteria. A pessimistic designer, or one

interested in robust information design, expects the worst outcome:

g(D) ∈ argmin
γ∈D

∑
a,θ

γ(a, θ)v(a, θ) (1)

for all compact D ⊆ ∆(Θ×A). An optimistic designer would instead expect the best

equilibrium, with argmax instead of argmin in (1). Other criteria, such as random

choice rules, could also be considered. Letting g(S,π) := g(OΣ(S, π)), the designer’s

ex-ante expected payoff is given by

V (S, π) :=
∑
a,θ

g(S,π)(a, θ) v(a, θ). (2)

Finally, the information design problem is sup
(S,π)

V (S, π).

3While commitment can be a strong assumption in some situations, it holds implicitly in re-
peated environments wherein a sender makes announcements periodically and wants to be trusted
in the future (Best and Quigley (2018) and Mathevet, Pearce, and Stacchetti (2018)).
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3. Information Design as Belief Manipulation

We reformulate information design into a belief manipulation problem, analogously

to Kamenica and Gentzkow (2011)’s approach to the single-agent case. Choosing an

information structure is equivalent to choosing a distribution over belief hierarchies.

However, only a special class of belief (hierarchy) distributions can be induced by

information structures. Kamenica and Gentzkow (2011) established that choosing

an information structure is equivalent to choosing a Bayes plausible distribution

over first-order beliefs. We show that a similar equivalence holds in games, provided

that agents’ beliefs are, in addition, consistent with each other.

3.1. Belief Distributions

A belief hierarchy ti for agent i is an infinite sequence (t1i , t
2
i , . . .) whose com-

ponents are coherent4 beliefs of all orders: t1i ∈ ∆Θ is i’s first-order belief; t2i ∈
∆(Θ× (∆Θ)n−1) is i’s second-order belief (i.e., a belief about θ and every j’s first-

order beliefs); and so on. Even if the belief hiearchies are coherent, they may assign

positive probability to other agents’ belief hierarchies that are not coherent. Bran-

denburger and Dekel (1993) show that we can construct a set of coherent belief hier-

archies Ti for every i such that there exists a homeomorphism β∗i : Ti → ∆(Θ×T−i)
for all i.5 This map describes i’s beliefs about (θ, t−i) given ti, and shows that there

are sets of coherent belief hierarchies for all agents that only put positive probabil-

ities on each other, making coherency common knowledge. Let T :=
∏

i Ti be the

space of hierarchy profiles with common knowledge of coherency.

Given µ0 and an information structure (S, π), and upon receiving a message

si, agent i formulates beliefs µi(si) ∈ ∆(Θ× S−i) about the state and other agents’

messages in S−i :=
∏
j 6=iSj by using Bayes’ rule. In particular, µ1

i (si) := margΘµi(si)

describes i’s belief about the state given si, called first-order belief. Since every j

has a first-order belief µ1
j(sj) for every message sj, i’s belief about sj (given si) gives

i a belief about µ1
j(sj). This belief about j’s belief about the state is i’s second-order

belief µ2
i (si) given si.

6 Since every j has a second-order belief µ2
j(sj) for every sj, i

can formulate a third-order belief given si and so on. By induction, every si induces

a belief hierarchy hi(si) ∈ Ti for agent i, and every message profile s induces a profile

of belief hierarchies h(s) := (hi(si))i∈N .

Definition 1. An information structure (S, π) induces a distribution τ ∈ ∆T over

4A hierarchy t is coherent if any belief tki coincides with all beliefs of lower order, {tni }
k−1
n=1, on

lower order events: margXk−1
tki = tk−1i for all k ≥ 1 where Xk−1 = supp tk−1i .

5We often write β∗i (t−i|ti) and β∗i (θ|ti) to refer to the corresponding marginals.
6Technically speaking, a second-order belief also includes a first-order belief.
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π(·|0) s1 s2

s1 1 0

s2 0 0

π(·|1) s1 s2

s1
1
2

0

s2 0 1
2

Table 1: A (Public) Information Structure

profiles of belief hierarchies, called a belief(-hierarchy) distribution, if

τ(t) =
∑
θ

π
(
{s : h(s) = t}|θ

)
µ0(θ) (3)

for all t.

For example, the information structure in Table 1 induces τ = 3
4
t1/3 + 1

4
t1 when

µ0 := µ0(θ = 1) = 1
2
, where tµ is the hierarchy profile in which µ := µ(θ = 1) is

commonly believed.7

We categorize belief distributions into public and private. This distinction is

closely linked to the nature of information that induces those distributions.

Definition 2. A belief distribution τ is public if t1i = t1j and margT−iβ
∗
i (·|ti) = δt−i

(where δ is the Dirac measure) for all t ∈ supp τ and |supp τ | ≥ 2. A belief

distribution τ is private if it is not public.

The first part says that agents share the same first-order beliefs and this is

commonly believed among them. This is the natural translation in terms of beliefs

of the standard notion of public information. Notice also that we categorize the

degenerate case |supp τ | = 1 as private. When the support is a singleton this

distinction is indeed mostly a matter of semantics; yet the current choice makes our

characterization later on more transparent.

3.2. Manipulation

Consider an environment with two agents and two equally likely states θ ∈ {0, 1}.
For each agent i = 1, 2, consider two belief hierarchies, ti and t′i, such that

β∗i (tj|ti) = β∗i (t
′
j|t′i) = 1 ∀i, j 6= i, (4)

β∗1(θ = 1|t1) = β∗1(θ = 1|t′2) = 0.8 and β∗1(θ = 1|t′1) = β∗1(θ = 1|t2) = 0.2. In words,

at (t1, t2) and (t′1, t
′
2), the agents believe that θ = 1 with different probabilities, 0.8 or

7To see why, note that Pr(s1, s1) = 3
4 , Pr(s2, s2) = 1

4 , and an agent i receiving message s` has
beliefs (2`− 1)/3 that θ = 1 and is certain that j also received s`.
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0.2, and this disagreement is commonly known. Can the belief-hierarchy distribution

τ(t) = τ(t′) = 1/2 be induced by some information structure? More generally, can

the designer ever get agents to agree to disagree? Since Aumann (1976), we have

known that Bayesian agents cannot agree to disagree if they have a common prior.

Say that p ∈ ∆(Θ× T ) is a common prior if

p(θ, t) = β∗i (θ, t−i|ti)p(ti) (5)

for all θ, t and i. That is, all agents i obtain their belief map β∗i by Bayesian

updating of the same distribution p. Denote by ∆f the probability measures with

finite support. Define

C :=
{
τ ∈ ∆fT : ∃a common prior p s.t. τ = margTp

}
(6)

to be the space of consistent (belief-hierarchy) distributions. In a consistent dis-

tribution, all agents’ beliefs arise from a common prior that draws every t with the

same probability as τ , i.e., τ = margTp. Let pτ be the unique distribution p in (6)

(uniqueness follows from Mertens and Zamir (1985, Proposition 4.5)).

Note that consistency does not require that margΘp = µ0, which is a conceptually

different point. A distribution τ ∈ ∆fT is Bayes plausible for agent i if∑
ti

margΘβ
∗
i (·|ti)τi(ti) = µ0,

that is, if agent i’s expected first-order belief equals the state distribution.

Proposition 1. There exists an information structure that induces τ ∈ ∆fT , if and

only if, τ is consistent and Bayes plausible for some agent i.

This characterization, which builds upon Mertens and Zamir (1985), disciplines

the designer’s freedom in shaping agents’ beliefs. In the one-agent case, information

disclosure is equivalent to choosing a Bayes plausible distribution over first-order

beliefs. In the multi-agent case, it is equivalent to choosing a consistent distribution

over belief hierarchies, which is Bayes plausible for some agent. Importantly, it does

not matter which agent i satisfies Bayes plausibility, because by consistency, if it is

true for one agent, then it will hold for all.

Notice, however, that merely ensuring that Bayes plausibility holds for all agents

does not guarantee consistency. In the simple example above, τ is Bayes plausible

for both agents and yet fails consistency, because β∗1(θ = 1, t′2|t′1) · 1
2

= 0.2 · 1
2
6=

β∗2(θ = 1, t′1|t′2) · 1
2

= 0.8 · 1
2

violates (5).

From an operational viewpoint, there are two distinct ways of designing a con-
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sistent belief-hierarchy distribution. The first one is to design the distributions of

agents’ beliefs individually and, then, couple them so as to ensure consistency (see

Ely (2017) for a related procedure). A different approach, formulated in the next

proposition, is to design the distribution of designer ’s beliefs and then to derive

from it the resulting consistent distribution of agents’ beliefs.

Proposition 2. τ ∈ ∆f (T ) is consistent and Bayes plausible if and only if there

exists ν : supp τ → ∆Θ such that, for all t, θ and i,∑
t

τ(t)ν(θ|t) = µ0(θ), (7)

ν(θ|ti, t−i) = β∗i (θ|ti, t−i) :=
β∗i (θ, t−i|ti)
β∗i (t−i|ti)

(8)

τ(t−i|ti) = β∗i (t−i|ti). (9)

Whereas each agent i only observes ti, the designer observes the entire hierarchy

profile t = (t1, . . . , tn), and hence is better informed than every single agent. In

the above, ν(t) is interpreted as the designer’s beliefs about the state, obtained by

conditioning on t. The result demonstrates that any consistent and Bayes plausi-

ble belief-hierarchy distribution corresponds to a specific distribution of designer’s

beliefs, and vice-versa—a relationship governed by three conditions. The first one

states that the average of the designer’s beliefs is equal to the distribution of states.

This is a form of Bayes plausibility at the designer’s level. The second requires that

the designer’s beliefs about the state be the same as what any agent would believe

if he also knew the information of all the other agents. The last condition requires

that i’s conditional beliefs about the other agents’ hierarchies can be derived from

τ by conditioning on i’s belief hierarchy. This result suggests a different way of

approaching the design of (consistent and Bayes plausible) belief-hierarchy distribu-

tions: it is equivalent to designing the distribution of the designer’s beliefs subject

to Bayes plausibility in (7) and deriving the agents’ hierarchies via (8) and (9). We

demonstrate how this can be a useful way of implementing consistency in Section 5.

3.3. Outcomes from Belief Distributions

To complete the formulation of information design in the space of beliefs, the equiv-

alence between information structures and belief distributions should be more than

epistemic, it should be about outcomes. For any consistent distribution τ , let a solu-

tion concept be a collection ΣB(τ) of sets Λ ⊆ {σ : supp τ → ∆A}.8 This describes

8We thank Daniel Clark for pointing out an error which led to a substantial improvement of
this section.
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agents’ behavior in the Bayesian game 〈G, pτ 〉, where pτ is the unique common prior

p such that margTp = τ . The different Λ’s capture possibly correlated behaviors,

enabled by the addition of different (belief-preserving) correlating devices to τ (see

Liu (2009)). Given any Λ ∈ ΣB(τ), the resulting outcomes are

OΛ(τ) := {γ ∈ ∆(A×Θ) : there exists σ ∈ Λ such that

γ(a, θ) =
∑

tσ(a|t)pτ (t, θ) for all (a, θ)},

from which it follows that the designer’s ex-ante expected payoff from a consistent

distribution τ is

w(τ) := sup
Λ∈ΣB(τ)

∑
θ,a

g(OΛ(τ))(a, θ) v(a, θ). (10)

Note that ΣB is useful only insofar as it captures the appropriate outcomes from

solution concept Σ. Hence, we assume that Λ ∈ ΣB(τ) if and only if Λ is such that

OΛ(τ) = OΣ(S, π) for some (S, π) inducing τ . In general, it is well-known that a

given solution concept may not yield the same set of outcomes when applied to an

information structure as when applied to the corresponding belief distribution (e.g.,

Ely and Peski (2006) and Liu (2009)). Indeed, even if (S, π) induces τ , there may

be multiple message profiles s inducing the same hierarchy profile t, thus creating

opportunities for redundant correlations of agents’ behavior that are not possible in

τ . In some cases, the literature makes clear which ΣB should be chosen given Σ. For

example, if Σ = BNE, then said correlations can be recovered (without affecting the

beliefs in τ) by taking ΣB to be Liu (2015)’s belief-preserving correlated equilibrium.

Alternatively, if Σ is interim correlated rationalizability (Dekel, Fudenberg, and

Morris (2007)), then ΣB should also be interim correlated rationalizability.

4. Representation of Optimal Solutions

In this section, we prove that optimal solutions to information design problems in

games can be seen as a combination of special distributions. As a consequence, all

optimal solutions can be decomposed into optimal purely private and optimal public

components, where the latter come from concavification.

4.1. Assumptions

Our approach can handle various selection rules and solution concepts, provided the

following assumptions hold:

(Linear Selection). For all D′, D′′ ⊆ ∆(Θ × A) and 0 ≤ α ≤ 1, g(αD′ + (1 −
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α)D′′) = αg(D′) + (1− α)g(D′′).

(Invariant Solution). Fix τ, τ ′, τ ′′ ∈ C such that supp τ = supp τ ′ ∪ supp τ ′′

and supp τ ′ ∩ supp τ ′′ = ∅. Λ ∈ ΣB(τ) if and only if there exist Λ′ ∈ ΣB(τ ′) and

Λ′′ ∈ ΣB(τ ′′) such that Λ =
{
σ : supp τ → ∆A

∣∣∣σ|supp τ ′ ∈ Λ′ and σ|supp τ ′′ ∈ Λ′′
}
.

Linearity of g is a natural assumption that requires the selection criterion to be

independent of the subsets of outcomes to which it is applied. The best and the

worst outcomes, defined in (1), are linear selection criteria. However, selecting the

best outcome within one subset and the worst in another breaks linearity, unless the

outcome is always unique.

Invariance says that play at a profile of belief hierarchies t under ΣB is indepen-

dent of the ambient distribution from which t is drawn. For instance, Liu (2015)’s

correlated equilibrium satisfies invariance. And when Σ = ICR (that is, Interim

Correlated Rationalizability by Dekel, Fudenberg, and Morris (2007)), it is well-

known that ΣB = Σ, which also satisfies invariance. Invariance is important because

it allows us to recover the outcomes from any consistent distribution through appro-

priate randomizations over distributions with smaller supports and, thus, ensures

linearity of the ex-ante payoff (Proposition 4 and Lemma 3 in the Appendix).

4.2. Representations

Information design exhibits a convex structure when seen as belief manipulation.

From any consistent τ ′ and τ ′′, the designer can build a third distribution, τ =

ατ ′+(1−α)τ ′′, which can be induced by an information structure provided that it is

Bayes plausible. In particular, this is true even if τ ′ and τ ′′ are themselves not Bayes

plausible. In technical terms, C is convex and, moreover, admits extreme points.9

In the tradition of extremal representation theorems,10 the designer generates a

consistent and Bayes plausible distribution by randomizing over extreme points,

and any consistent and Bayes plausible distribution can be generated in this way.

By Proposition 1, any information structure can thus be interpreted as a convex

combination of extreme points. Importantly, these extreme points have a useful

characterization: they are the minimal consistent distributions (see Lemma 2 in

Appendix A.3). A consistent distribution τ ∈ C is minimal if there is no τ ′ ∈ C
such that supp τ ′ ( supp τ . Let CM denote the set of all minimal distributions,11

9An extreme point of C is an element τ ∈ C with the property that if τ = ατ ′+ (1−α)τ ′′, given
τ ′, τ ′′ ∈ C and α ∈ [0, 1], then τ ′ = τ or τ ′′ = τ .

10E.g., Minkowski–Caratheodory theorem, Krein-Milman theorem, and Choquet’s integral rep-
resentation theorem.

11Minimal belief subspaces appeared in contexts other than information design in Heifetz and
Neeman (2006), Barelli (2009), and Yildiz (2015).
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which is nonempty by basic inclusion arguments. From this definition follows a nice

interpretation in terms of information. The minimal distributions correspond to

purely private information. By definition, any non-minimal distribution τ contains

two consistent components with support supp τ ′ and supp τ\supp τ ′. A public signal

makes it common knowledge among the agents which of these two components their

beliefs are in. Since a minimal belief distribution has only one component, it contains

no such public signal. As such, it is purely private information (possibly degenerate).

Owing to their mathematical status as extreme points, the minimal consistent

distributions correspond to the basic elements from which all other consistent dis-

tributions can be constructed. In the single-agent case, the minimal distributions

are the agent’s first-order beliefs. The results below formalize their special role in

information design.12

Theorem 1 (Representation Theorem). The designer’s maximization problem can

be represented as

sup
(S,π)

V (S, π) = sup
λ∈∆f (CM)

∑
e∈ suppλ

w(e)λ(e)

subject to
∑

e∈ suppλ

margΘpe λ(e) = µ0.
(11)

Corollary 1 (Within–Between Maximizations). For any µ ∈ ∆Θ, let

w∗(µ) := sup
e∈CM:margΘpe=µ

w(e). (12)

Then, the designer’s maximization problem can be represented as

sup
(S,π)

V (S, π) = sup
λ∈∆f∆Θ

∑
suppλ

w∗(µ)λ(µ)

subject to
∑

suppλ

µλ(µ) = µ0.
(13)

From the representation theorem, the designer maximizes her expected payoff as

if she were optimally randomizing over minimal consistent distributions, subject to

posterior beliefs averaging to µ0 across those distributions. Every minimal distri-

bution e induces a Bayesian game and leads to an outcome for which the designer

receives expected payoff w(e). Every minimal distribution has a (marginal) distri-

bution on states, margΘpe = µ, and the “further” that is from µ0 , the “costlier” it

12We further illustrate the notion of minimal distribution in the Supplementary Appendix by
characterizing minimal distributions for public and conditionally independent information.
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is for the designer to use it. In this sense, the constraint in (11) can be seen as a

form of budget constraint.

The corollary decomposes the representation theorem into two steps. First, there

is a maximization within—given by (12)—that takes place among all the mini-

mal distributions with margΘpe = µ and for all µ. All minimal distributions with

the same µ contribute equally toward the Bayes plausibility constraint; hence, the

designer should choose the best one among them, i.e., the one that gives the high-

est value of w(e). Interestingly, maximization within delivers the optimal value of

private information, which takes the form of a value function µ 7→ w∗(µ). The pos-

sibility to identify the optimal value of private information comes from the fact that

all minimal distributions represent purely private information.

Second, there is a maximization between that concavifies the value function,

thereby optimally randomizing between the minimal distributions that maximize

within. This step is akin to a public signal λ that “sends” all agents to different

minimal distributions e, thus making e common knowledge. From standard argu-

ments (Rockafellar (1970, p.36)), the rhs of (13) is a characterization of the con-

cave envelope of w∗, defined as (cavw∗)(µ) = inf{g(µ) : g concave and g ≥ w∗}.
Hence, the corollary delivers a concave-envelope characterization of optimal design.

In the one-agent case, {e ∈ CM s.t. margΘpe = µ} = {µ}, hence w∗ = w in (12) and

the theorem reduces to maximization between.

The above decomposition is most useful when maximization within is performed

over a restricted set of minimal belief distributions. Such restrictions are made in

the context of constrained information design. For example, in some applications, it

may be appropriate to limit the maximization within to conditionally independent

private information. Alternatively, there are environments in which, imposing re-

strictions can be done without loss of generality. This is shown in the application of

the next section, where consistency, Bayes plausibility and the payoff externalities

impose enough structure that the unconstrained optimal solution can be computed

by restricting maximization within to a small subset of minimal belief distributions.

Whether these restrictions constrain the optimal solution or not, the restricted set

of minimal belief distributions forms the smallest class of distributions from which

that optimal solution can be derived by means of concavification.
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5. Application: Fostering Investment under Ad-

versarial Selection

Monetary incentives have been used to stimulate investment and technology adop-

tion (e.g., tax incentives by governments), to stabilize banks and currencies (e.g.,

financial interventions by central banks), and to increase efforts in organizations

(e.g., compensation schemes by companies). In such situations, often characterized

by coordination motives, the strategic provision of information by a third party

constitutes a different way of leveraging the underlying complementarities.

We consider the problem of fostering investment in an interaction where two

agents are choosing whether or not to invest, {I,N}, given an uncertain state θ ∈
{−1, 2}. The payoffs of the interaction are summarized in Table 2. Let µ0 :=

Prob(θ = 2) > 0 denote the probability of the high state.

(u1, u2) I N

I θ, θ θ − 1, 0

N 0, θ − 1 0, 0

Table 2: Investment Game

Under complete information, each agent has a dominant strategy to invest when

θ = 2 and not to invest when θ = −1. Under incomplete information, however,

a coordination problem arises. An agent with a “moderate” belief that θ = 2 will

invest if and only if he believes that the other agent is likely enough to invest as

well. This gives rise to multiple equilibria.13

Consider an information design problem with the following features:

(a) The designer wants to stimulate investment and values the complementar-

ities between agents. This is modeled by a symmetric and monotone payoff

function: v(I, I) > v(I,N) = v(N, I) > v(N,N) = 0, such that v(I, I) ≥
3
2
v(I,N). The latter condition includes all supermodular14 designers.

13This game differs in an important way from Carlsson and van Damme (1993) and Morris and
Shin (2003), because the coordination problem arises only under incomplete information. It also
differs from Rubinstein (1989), Kajii and Morris (1997), and Hoshino (2018), because no equilib-
rium of the complete information game is robust to the introduction of incomplete information. For
example, (N,N) is a dominant equilibrium in the low state θ = −1, which makes (I, I) sensitive
to the introduction of incomplete information.

14Supermodular (submodular) designers are those for which v(I, I) + v(N,N) ≥ (≤)v(N, I) +
v(I,N).
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(b) The solution concept is Bayes Nash Equilibrium (BNE).

(c) The min selection rule, defined in (1), chooses the worst BNE outcome.

Adversarial equilibrium selection, defined by the min in (c), corresponds to a form

of robust information design: the designer aims to maximize the payoff she would

obtain if the worst equilibrium for her were played. When there are multiple equi-

libria, it is difficult to predict which one the agents will coordinate on. Therefore,

in environments where erroneous coordination can be particularly detrimental, it

is especially important that information be designed to secure the highest possible

payoff.

The current method available for Bayes-Nash information design, based on BCE

(see Bergemann and Morris (2016) and Taneva (2019)), cannot be used to solve this

problem, because it does not apply to adversarial selection. To see why, consider any

µ0 ∈ [1
2
, 2

3
). The solution to the BCE program prescribes to provide no information

to the agents, namely π∗(I, I|θ) = 1 for all θ. This is because the BCE method

implicitly invokes the max selection rule (see Bergemann and Morris (2018) for

further discussion). Since (I, I) and (N,N) are both BNE in the absence of any

additional information, the max rule selects (I, I). Instead, under the min rule,

(N,N) will be selected, which results in the smallest possible payoff for the designer.

We use our approach to compute an optimal information structure and show that,

under adversarial selection, the designer can achieve a higher expected payoff for

µ0 ∈ [1
2
, 2

3
) by revealing some information privately to one of the agents while leaving

the other agent uninformed.

5.1. Worst-Equilibrium Characterization

We begin with a characterization of the worst BNE for the designer. When an agent

believes that θ = 2 with probability larger than 2/3, investing is uniquely optimal15

for him, irrespective of his belief about the other agent’s action. Investing can also

be uniquely optimal even when an agent’s belief that θ = 2 is less than 2/3, if that

agent believes the other agent will invest with large enough probability.

Using the concepts from Section 3, let ρki be the set of hierarchies defined induc-

tively as follows:

ρ1
i =

{
ti : β∗i ({θ = 2} × Tj|ti) >

2

3

}
ρki =

{
ti : β∗i ({θ = 2} × Tj|ti) +

1

3
β∗i (Θ× ρk−1

j |ti) >
2

3

}
.

15Formally, uniquely rationalizable.
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If agent i’s hierarchy ti is in ρ1
i , then he believes with probability greater than 2/3

that θ = 2, and his unique optimal response is to play I. If ti ∈ ρ2
i , then agent

i assigns high enough probability either to θ = 2 or to agent j playing I (due to

tj ∈ ρ1
j), so that I is again uniquely optimal. By induction, the same conclusion

holds for hierarchies in ρki for any k ≥ 1. Letting ρi := ∪k≥1ρ
k
i , the unique optimal

action for an agent with belief in ρi is I. This implies that, in all BNEs, agent i’s

equilibrium strategy must choose I with certainty when his hierarchy is in ρi.

Given a belief distribution τ ∈ C, the worst equilibrium for our designer is such

that all agents play I only when their beliefs belong to ρi (that is, only when I is

uniquely rationalizable) and play N otherwise: for all i and ti,

σMIN

i (I|ti) =

{
1 if ti ∈ ρi
0 otherwise.

(14)

5.2. Solution

Following Theorem 1 and Corollary 1 we solve the information design problem in

two steps: maximization within and maximization between.

5.2.1. Maximization Within

We first characterize the state distributions for which the maximization within in-

duces joint investment (i.e., investment by both agents) with certainty in the worst

equilibrium. For µ > 2/3, each agent invests regardless of the other’s decision.

Therefore, it is optimal to provide no information. For µ < 2/3, instead, informa-

tion can be used, at least in some cases, to induce joint investment with certainty

by exploiting the equilibrium structure. In these cases, the designer induces some

agent (say agent 1) to invest at a type t1 only based on his first-order belief being

greater than 2/3, i.e., t1 ∈ ρ1
1. Leveraging the presence of t1, the designer can induce

a type t2 of agent 2 to invest, with a first-order belief lower than 2/3. This type

finds investing uniquely optimal because of the sufficiently high probability it assigns

to t1, i.e., t2 ∈ ρ2
2. This allows for a type t′1 of agent 1 to invest, with even lower

first-order beliefs, based on the probability it assigns to t2, i.e., t′1 ∈ ρ3
1. This chain

of reasoning continues for as many messages as the designer sends, each message

corresponding to a different hierarchy.

We combine this insight with the conditions of Proposition 2 to obtain a system

of inequalities and one equation ((29)-(32) in the Appendix), which characterizes

the minimal distributions that induce joint investment with certainty at µ. Simple

addition of the inequalities shows that µ must be greater than 1/2, as stated in the
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following result.

Claim 1. Joint investment with certainty can be achieved if and only if µ > 1/2.

In the maximization within, revealing no information for µ ∈ (1/2, 2/3) yields

no investment in the worst equilibrium. Therefore, the designer has to reveal some

(private) information to induce joint investment with certainty for this range of µ. In

fact, for all µ ∈ (1/2, 2/3) this can be achieved with the simple minimal distributions

presented in Table 3, where ε is a small positive number. From Claim 1 it follows

e∗µ t2 : µ2 = µ

t1 : µ1 = 2/3 + ε 3(µ− ε)− 1

t′1 : µ′1 = 1/3 + ε 2− 3(µ− ε)

Table 3: Optimal Minimal Distributions for µ ∈ (1/2, 2/3)

that the designer can no longer generate joint investment with certainty for µ ≤ 1/2.

But can she still generate enough investment that her value from the maximization

within is relevant for the concavification stage? As we show in the next section, for

many monotone designers the answer is no; hence maximization within for µ ≤ 1/2

can be dispensed with.

5.2.2. Maximization Between

Assuming the designer does not maximize within for µ < 1/2, we obtain a value

function w̃∗(µ) equal to v(I, I) if µ > 1/2 and 0 otherwise. This function is plotted

(dashed lines) in Figure 1 for a designer with v(I, I) = 2 and v(N, I) = v(I,N) = 1.

The concave envelope of w̃∗,

(cav w̃∗)(µ) =

{
v(I, I) if µ > 1/2

2µv(I, I) if µ ≤ 1/2,

is also depicted (solid blue lines) in Figure 1. Our next result states that this concave

envelope represents the optimal solution. We prove that the value of maximization

within for µ ≤ 1/2 cannot be relevant for the concavification, and therefore its

computation within this range can be omitted without loss of generality.

Claim 2. (cav w̃∗)(µ0) is the designer’s optimal expected value at µ0.

The optimal belief-hierarchy distribution is given by:

– for µ0 >
2
3
, reveal no information
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– for µ0 ∈
(

1
2
, 2

3

]
, use e∗µ with probability 1.

– for µ0 ≤ 1
2
, use a public signal that either draws e∗1/2+ε with probability

2µ0/(1 + 2ε) or makes it common knowledge that θ = −1 with the remaining

probability.16

The corresponding optimal information structure for µ0 ≤ 1
2

is presented in Table

4.

4
9

1
2

1 µ

w

2

5
3

w̃∗

cav w̃∗

Figure 1: Optimal Value.

π∗( · |θ = −1) s q

s, s′1
µ0

1−µ0

1/3−ε
1+2ε

0

s, s′′1
µ0

1−µ0

2/3−ε
1+2ε

0

q 0 1−2µ0+2ε
(1−µ0)(1+2ε)

π∗( · |θ = 2) s q

s, s′1
2/3+ε
1+2ε

0

s, s′′1
1/3+ε
1+2ε

0

q 0 0

Table 4: Optimal information structure for µ0 ≤ 1/2.

16Under adversarial selection, an optimal solution may not exist for all µ0 (for instance at
µ0 = 1/2 in our example). However, the supremum of Theorem 1 can always be approached with
arbitrary precision for all µ0. In our example, (cav w̃∗)(µ0) gives the exact value of the supremum
for all µ0. It is obtained by concavifying the function w̃∗ε , equal to 0 for all µ < 1/2 + ε and 2
otherwise, and taking the pointwise limit as ε ↓ 0. The function w̃∗ε corresponds to using e∗µ from
Table 3 (which depends on ε) for µ ≥ 1/2 + ε and giving no information for lower µ.
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5.3. Extension

When the designer values unilateral investment enough that Claim 2 no longer holds,

maximization within may become relevant for µ ≤ 1/2, because its value may dom-

inate (cav w̃∗)(µ). For such designers and state distributions, the optimal minimal

distribution will necessarily put mass on at least one hierarchy at which N is also

rationalizable and will thus be played in the worst equilibrium. For these hiearchies,

Lemma 5 in the Appendix establishes that it is optimal to set the first-order beliefs

to zero, because, for a fixed µ, this allows the designer to put more weight on other

hierarchies that do invest. Therefore, an optimal minimal distribution can be found

by solving our system ((29) – (32)), with as few first-order beliefs equal to zero as

possible to find a solution at each µ.17

5.4. Discussion

Private information plays a central role in the optimal design of robust incentives

under adversarial selection. In our application, private information fosters robust

investment by making agents uncertain about each other’s beliefs about the state,

while, at the same time, making them certain about each other’s behavior. By giving

some information to one of the agents while leaving the other one uninformed, the

designer makes the latter uncertain about the beliefs of the former in a way that

induces joint investment with certainty. It is sufficient for the uninformed agent to

believe with high enough probability that investing is dominant for the other agent,

in order to make investment uniquely optimal for him as well. In contrast, it is

public information that plays the central role under favorable equilibrium selection.

Notice that public information can also provide robust incentives to invest under

adversarial selection, but only if it makes both agents extremely optimistic (with

first-order beliefs greater than 2/3). This use of information, however, is suboptimal,

because joint investment can be achieved through private information, even when

agents are not as optimistic. How this is possible is explained next.

Optimal information disclosure under adversarial selection brings out two im-

portant principles underpinning the role of private information: bandwagon effect

and extreme pessimism. The bandwagon effect is the force that provides robust

incentives to invest without relying on agents’ (mutual) extreme optimism about

the state. There needs to be only one type of one agent (agent 1 of type t1) with

first-order beliefs about the state high enough to make investment strictly dominant

17We do not need to compute the maximization within in our example for µ < 1/2, due to Claim
2. However, we used our system to compute its value for R = L = 2 (that is, two messages per
player) and have plotted the result (the dotted line) in Figure 1 for completeness.
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at that type. Then, investing becomes uniquely optimal for the other agent (agent

2 of type t2) under a more pessimistic belief about the state, if he puts sufficiently

high probability on agent 1 being extremely optimistic (i.e., on agent 1 being of

type t1). In turn, investing becomes uniquely optimal for the second type of agent

1 (type t′1), with an even lower first-order belief, because he is certain that player 2

will always invest. This contagion process trades off pessimism about the state for

optimism about the other agent’s investment by taking advantage of the two kinds

of payoff complementarities. This trade off can only be exploited by informative

private signals.

Just as investment should be induced efficiently, so should be non-investment.

In our application, the designer causes an extreme form of pessimism, according to

which an agent is certain that the state is bad whenever he chooses not to invest.

If, instead, the designer were to induce a moderate belief about the state, at which

both actions could be optimal depending on coordination, then not investing would

be played in the worst equilibrium. Therefore, the designer should make him as

pessimistic as possible, since this does not change his behavior in the worst equilib-

rium, while allowing the designer to increase the probability of robust investment.

This step also takes advantage of the complementarities: extremely pessimistic be-

liefs incentivize non-investment because the complementarities between an agent’s

action and the state overpower the strategic complementarities. This allows the

designer to put more probability on higher beliefs at which the bandwagon effect

induces robust investment. Extreme pessimism also emerges in the solution to the

single-agent problem of Kamenica and Gentzkow (2011), in which the agent is cer-

tain about the state when taking the undesirable (to the designer) action. As in

our application, this in turn allows the designer to induce the desirable action with

maximal probability subject to Bayes plausibility.

6. Conclusion

This paper contributes to the foundations of information design with multiple inter-

acting agents. Our representation results formulate the belief-based approach to the

problem, and decompose it into maximization within and between, where the latter

is concavification. This approach accommodates various equilibrium selection rules

and solution concepts, which can be used to analyze diverse topics, such as robust-

ness, bounded rationality, collusion, or communication. We provide an economic

application based on a two-agent investment game, and apply our approach to solve

the information design problem under adversarial equilibrium selection. An obvious

avenue for future research is to generalize this robust information design to a class of
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games with strategic complementarities, for which our results from the investment

game provide the fundamental logic. Examining the implications of heterogenous

prior distributions among the agents is another interesting extension of the current

framework.
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Appendix

A. Proofs of Main Results

A.1. Proof of Proposition 1

Let τ be induced by some (S, π), so that

τ(t) =
∑
θ

π
(
{s : h(s) = t}|θ

)
µ0(θ) (15)

for all t ∈ supp τ . Define p ∈ ∆(Θ× T ) as

p(θ, t) = π
(
{s : h(s) = t}|θ

)
µ0(θ) (16)

for all θ and t ∈ supp τ . It is immediate from (15) and (16) that margTp = τ

and so margTip = τi for all i. Further, when any agent i forms his beliefs under

(S, π), he computes µi : Si → ∆(Θ×S−i) by conditioning π(s|θ)µ0(θ) on si, so that

β∗i : Ti → ∆(Θ× T−i) is given by the conditional of p given ti. That is,

p(θ, t) = β∗i (θ, t−i|ti)margTip(ti)

for all i, θ, and t ∈ supp τ . This shows τ ∈ C. Finally,∑
ti∈supp τi

β∗i (θ|ti)τi(ti) :=
∑

t∈supp τ

p(θ, t) =
∑
t

π
(
{s : h(s) = t}|θ

)
µ0(θ) = µ0(θ)

for all θ, which proves Bayes plausibility.

Suppose now that τ ∈ C and satisfies Bayes plausibility. Let us show that these

conditions are sufficient for τ to be induced by some (S, π). Define information

structure (supp τ, πτ ) where

πτ (t|·) : θ 7→ 1

µ0(θ)
β∗i (θ, t−i|ti)τi(ti) (17)

for all t ∈ supp τ , which is defined independently of the choice of i because τ ∈ C.
First, let us verify that πτ is a valid information structure. Bayes plausibility says∑

ti∈supp τi

β∗i (θ|ti)τi(ti) = µ0(θ),
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which guarantees that∑
t∈supp τ

πτ (t|θ) =
1

µ0(θ)

∑
t∈∈supp τ

β∗i (θ, t−i|ti)τi(ti) = 1,

(i.e., π(·|θ) is a probability distribution for every θ). By construction, this in-

formation structure is such that, when any agent j receives tj, his beliefs are

µj(·|tj) = β∗j (·|tj), also because τ ∈ C. To prove that πτ generates τ , we also

need to check that

τ(t) =
∑
θ

πτ (t|θ)µ0(θ) (18)

for all t ∈ supp τ . By (17), the rhs of (18) is equal to β∗i (t−i|ti)τi(ti), which equals

τ(t) because τ ∈ C (in particular, because margΘp = τ). �

A.2. Proof of Proposition 2

Proof. Suppose τ is consistent and Bayes plausible. By definition, there exists a

common prior p ∈ ∆(Θ× T ) such that, for all t, θ and i,

p(θ, t) = β∗i (θ, t−i|ti)p(ti)

and margTp = τ . Moreover, by Bayes’ plausibility, margΘp = µ0. Define ν(θ|t) :=

p(θ|t) for all t and θ. We show that conditions (7), (8) and (9) are satisfied. First,∑
t τ(t)ν(θ|t) =

∑
t p(t)p(θ|t)

=
∑

t p(t)
p(θ,t)
p(t)

= µ0(θ),

Moreover, since p is a common prior, p(θ, t−i|ti) = β∗i (θ, t−i|ti) and p(t−i|ti) =

β∗i (t−i|ti) for all i, t and θ. Thus, for all i, t and θ,

ν(θ|ti, t−i) := p(θ|ti, t−i) =
p(θ, t−i|ti)
p(t−i|ti)

= β∗i (θ|ti, t−i).

Finally, since margTp = τ and p is a common prior,

τ(t−i|ti) = p(t−i|ti) = β∗i (t−i|ti),

for all i and t.

Now, consider τ ∈ ∆f (T ) and ν : supp τ → ∆Θ such that (7), (8) and (9) hold.

Define p ∈ ∆(Θ × T ) as p(θ, t) := τ(t)ν(θ|t) for all θ and t. We want to show that
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p is a common prior for τ . First, note that, by definition of p, p(t) =
∑

θ p(θ, t) =

τ(t)
∑

θ ν(θ|t) = τ(t), for all t. Therefore, margTp = τ . Second, for all i, t and θ,

p(θ, t−i|ti) = p(θ,t)
p(ti)

= τ(t)ν(θ|t)
τ(ti)

= τ(t−i|ti)ν(θ|t)
= β∗i (t−i|ti)β∗i (θ|t) = β∗i (θ, t−i|ti).

The first equality comes from Bayes’ rule and the second equality comes from

the definition of p. In the fourth equality, we used conditions (8) and (9). Fi-

nally, in the last equality, we used the definition of β∗i (θ|ti, t−i). This implies that

p(θ, t) = β∗i (θ, t−i|ti)p(ti) for all θ, t and i. Therefore, p is a common prior for τ or,

equivalently, τ ∈ C. Finally, τ is Bayes plausible because, given (7),

p(θ) =
∑
t

p(θ, t) =
∑
t

τ(t)ν(θ|t) = µ0(θ),

for all θ.

A.3. Proof of Theorem 1

Lemma 1. C is convex.

Proof. Take α ∈ [0, 1] and τ ′, τ ′′ ∈ C. By definition of C, there are pτ ′ and pτ ′′ such

that margTpτ ′ = τ ′ and margTpτ ′ = τ ′ and

pτ ′(θ, t) = β∗i (θ, t−i|ti)τ ′i(ti),
pτ ′′(θ, t) = β∗i (θ, t−i|ti)τ ′′i (ti),

(19)

for all θ, i and t. Define τ := ατ ′ + (1 − α)τ ′′ and note that τi = ατ ′i + (1 − α)τ ′′i ,

by the linearity of Lebesgue integral. Define

pτ (θ, t) := β∗i (θ, t−i|ti)τi(ti)

for all i, θ, and t ∈ supp τ . Notice that pτ is well-defined, because of (19). Thus,

margTpτ = αmargTpτ ′ + (1− α)margTpτ ′′ = ατ ′ + (1− α)τ ′′ = τ

and we conclude that τ ∈ C.

Although C is convex, it is not closed because we can build sequences in C with

growing supports, only converging to a belief-hierarchy distribution with an infinite
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support. Still, the next lemma proves that minimal (consistent) distributions are

the extreme points of the set of consistent distributions.

Lemma 2. E = CM.

Proof. First, we show that CM ⊆ E . Take τ ∈ CM. If τ /∈ E , then there exist

τ ′, τ ′′ ∈ C with τ ′ 6= τ ′′ and α ∈ (0, 1) such that τ := ατ ′ + (1− α)τ ′′. Since τ ∈ CM,

τ ∈ C. Moreover, supp τ ′ ∪ supp τ ′′ ⊆ supp τ . For λ ∈ R+, let τλ := τ + λ(τ − τ ′′),
which is a linear combination between τ ′ and τ ′′. Indeed, by construction τ − τ ′′ =
α(τ ′− τ ′′) and, therefore, we can rewrite τλ = α(1 +λ)τ ′+ (1−α(1 +λ))τ ′′. Clearly,∑

t∈supp τ τλ(t) = 1 for all λ ∈ R+. Define Λ := {λ ≥ 0 : ∀t ∈ supp τ, 0 ≤ τλ(t) ≤ 1}
so that, by construction, τλ ∈ C for all λ ∈ Λ. Next, we establish a number of simple

properties of Λ. The set Λ is non-empty since both λ = 0 and λ = 1−α
α

belong to

it, which can be verified by substitution. Moreover, it is easy to check that Λ is

convex. The set Λ is closed. To see this, it is enough to consider any increasing

sequence (λm) ⊂ Λ∞ such that λm ↗ λ. We want to show λ ∈ Λ. For all t ∈ supp τ ,

by definition of τ , the sequence τλm(t) is monotone (either non-decreasing or non-

increasing) and, by definition of Λ, it lives in the compact interval [0, 1]. Therefore,

it converges in limm τλm(t) ∈ [0, 1]. Hence, λ ∈ Λ. Therefore, we can write Λ = [0, λ̃]

where λ̃ := max Λ ≥ 1−α
α

> 0.

We want to show that supp τλ̃ ( supp τ . To see this, let t̃ ∈ supp τλ̃ and

suppose t̃ /∈ supp τ . Then, by definition, τλ̃(t̃) = −λ̃τ ′′(t̃) ≤ 0, which is impossible.

Moreover, there must exist t ∈ supp τ such that τλ̃(t) = 0. To see this, suppose

not, i.e., suppose supp τ = supp τλ̃ . Then, for all t ∈ supp τ , we would have

that τλ̃(t) > 0. Since τλ̃ ∈ C by construction, and since |supp τ | > 1 (otherwise

τ ′ = τ ′′), we also have that τλ̃(t) < 1 for all t ∈ supp τ . Let T− := {t ∈ supp τ :

τ(t) − τ ′′(t) < 0} and T+ := {t ∈ supp τ : τ(t) − τ ′′(t) > 0}. These sets are non-

empty by assumption (τ ′ 6= τ ′′). For t ∈ T−, let λ(t) := −τ(t)
τ(t)−τ ′′(t) and notice that

0 = τ(t) + λ(t)(τ(t) − τ ′′(t)) < τλ̃(t), implying λ(t) > λ̃. Similarly, for t ∈ T+ let

λ(t) := 1−τ(t)
τ(t)−τ ′′(t) and notice that 1 = τ(t) + λ(t)(τ(t) − τ ′′(t)) > τλ̃(t), implying

λ(t) > λ̃. Now define λ′ := min{λ(t) : t ∈ T+ ∪ T−}, which is well-defined since

T+ ∪ T− is finite. By construction, τλ′ ∈ C and λ′ > λ̃, a contradiction to the fact

that λ̃ is the max. Therefore, we conclude that supp τλ̃ ( supp τ and thus τ /∈ CM.

We now show the converse, CM ⊇ E . Suppose τ ∈ C is not minimal, i.e., there

is a τ̃ ∈ C such that supp τ̃ ( supp τ . Define τ ′, τ ′′ ∈ ∆T as τ ′(·) := τ( · | supp τ̃)

and τ ′′(·) := τ( · | supp τ \ supp τ̃), the conditional distributions of τ on supp τ̃ and

supp τ \ supp τ̃ . Clearly,

τ = ατ ′ + (1− α)τ ′′ (20)
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where α = τ(supp τ̃) ∈ (0, 1). Since supp τ̃ is belief-closed, so is supp τ \ supp τ̃ .

To see why, note that for any t ∈ supp τ \ supp τ̃ , if there were i, t̃ ∈ supp τ̃ and

θ ∈ Θ such that pτ (θ, t̃−i|ti) > 0, then this would imply pτ (θ, ti, t̃−i) > 0 and, thus,

pτ (θ, ti, t̃−(ij)|t̃j) > 0 (where t̃−(ij) is the hierarchy profiles for agents other than i

and j). This implies that at t̃j — a hierarchy that agent j can have in τ̃ — agent j

assigns strictly positive probability to a hierarchy of agent 1 that is not in supp τ̃ .

This contradicts the fact that supp τ̃ is belief-closed. Since τ ′ and τ ′′ are derived

from a consistent τ and are supported on a belief-closed subspace, τ ′ and τ ′′ are

consistent. Given that τ ′′ 6= τ ′, (20) implies that τ is not an extreme point.

Proposition 3. For any τ ∈ C, there exist unique {e`}L`=1 ⊆ CM and weakly positive

numbers {α`}L`=1 such that
∑L

`=1 α` = 1 and τ =
∑L

`=1 α`e`.

Proof. Take any τ ∈ C. Either τ is minimal, in which case we are done, or it is

not, in which case there is τ ′ ∈ C such that supp τ ′ ( supp τ . Similarly, either τ ′ is

minimal, in which case we conclude that there exists a minimal e1 := τ ′ such that

supp e1 ( supp τ , or there is τ ′′ ∈ C such that supp τ ′′ ( supp τ ′. Given that τ

has finite support, finitely many steps of this procedure deliver a minimal consistent

belief-hierarchy distribution e1, supp e1 ( supp τ . Since τ and e1 are both consistent

and hence, their supports are belief-closed, supp τ \ supp e1 must be belief-closed.

Given that supp τ \ supp e1 is a belief-closed subset of supp τ and τ is consistent,

define a new distribution τ 2 as

pτ2(θ, t) :=
pτ (θ, t)

τ(supp τ \ supp e1)

for all θ ∈ Θ and t ∈ supp τ \ supp e1. By construction, supp τ 2 = supp τ \ supp e1.

Moreover, since τ ∈ C, pτ (θ, t) = β∗i (θ, t−i|ti)τ(ti) for all θ ∈ Θ, t ∈ supp τ , and i.

Hence,

pτ2(θ, t) =
pτ (θ, t)

τ(supp τ 2)
=
β∗i (θ, t−i|ti)τ(ti)

τ(supp τ 2)
= β∗i (θ, t−i|ti)τ 2(ti)

for all θ ∈ Θ, t ∈ supp τ 2, and i. In addition,

margT pτ2(θ, t) =
margTpτ (θ, t)

τ(supp τ 2)
=

τ(t)

τ(supp τ 2)
= τ 2(t)

for all θ ∈ Θ and t ∈ supp τ 2. Hence, τ 2 ∈ C. Therefore, we can repeat the procedure

again for distribution τ 2 ∈ C. Since τ has finite support, there exists L ∈ N such

that, after L steps of this procedure, we obtain consistent a belief-hierarchy distribu-

tion τL that is also minimal. We denote eL := τL and our procedure terminates. By

construction, we have that for each t ∈ supp τ , there exists a unique ` ∈ {1, . . . , L}
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such that τ = e`τ(supp e`). Therefore, τ =
∑L

`=1 α`e
` where α` := τ(supp e`) > 0

and
∑L

`=1 α` =
∑L

`=1 τ(supp e`) = 1.

Finally, we prove uniqueness. By way of contradiction, suppose that τ admits

two minimal representations, that is,

τ =
∑
`

α`e
` =

∑
k

ξkê
k

such that e` 6= êk for some `, k. This implies that for some t ∈ supp τ and some `, k,

it holds that t ∈ supp e` ∩ supp êk with e` 6= êk. Two cases are possible:

(i) supp e` 6= supp êk

Since e`, êk ∈ C, supp e` and supp êk are belief-closed, which in turn implies

T `,k := supp e` ∩ supp êk (nonempty by assumption) is also belief-closed. Therefore,

there exists a distribution e`,k supported on T `,k and described by

pe`,k(θ, t) :=
pτ (θ, t)

τ(T `,k)

for all θ ∈ Θ and t ∈ T `,k, which is consistent and supp e`,k ( supp e`. This

contradicts the minimality of e`.

(ii) supp e` = supp êk

Since e`, êk ∈ C, there exist common priors p and p̂ in ∆(Θ × T ) such that

margTp = e` and margT p̂ = êk. Thus, supp margTp = supp margT p̂. This implies

supp p = supp p̂ (If not, without loss there would exist some i, t̃ ∈ supp margTp and

θ̃ ∈ Θ, such that βi(θ̃, t̃−i|t̃i) > 0, while for all i and t ∈ supp margT p̂, βi(θ̃, t−i|ti) =

0. This would contradict supp margTp = supp margT p̂). By Propositions 4.4 and

4.5 in Mertens and Zamir (1985), there can be only one common prior with a given

finite support in ∆(Θ × T ), hence p = p̂. In turn, e` = êk, which contradicts that

e` 6= êk.

Now, we prove linearity of w. The point is to show that the set of outcomes of a

mixture of subspaces of the universal type space can be written as a similar mixture

of the sets of outcomes of these respective subspaces.

A.4. Proof of Proposition 4

For any τ ′, τ ′′ ∈ C, let

αOΛ′(τ
′) + (1− α)OΛ′′(τ

′′) :={
αγ′ + (1− α)γ′′ : γ′ ∈ OΛ′(τ

′) and γ′′ ∈ OΛ′′(τ
′′)
}
. (21)
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Proposition 4. If ΣB is invariant, then for all τ ′, τ ′′ ∈ C and τ = ατ ′ + (1− α)τ ′′

with α ∈ [0, 1], and for all Λ ∈ ΣB(τ), there are Λ′ ∈ ΣB(τ ′) and Λ′′ ∈ ΣB(τ ′′) such

that

OΛ(τ) = αOΛ′(τ
′) + (1− α)OΛ′′(τ

′′). (22)

Proof. Take any τ ′, τ ′′ ∈ C and α ∈ [0, 1] and let τ = ατ ′ + (1 − α)τ ′′. Take any

Λ ∈ ΣB(τ) and σ ∈ Λ. Define

γσ(a, θ) :=
∑

t∈supp τ

σ(a|t)pτ (t, θ) ∀ (a, θ), (23)

so that OΛ(τ) = {γσ : σ ∈ Λ}. It follows from invariance that Λ′ := {σ|supp τ ′ : σ ∈
Λ} is in ΣB(τ ′) and Λ′′ := {σ|supp τ ′′ : σ ∈ Λ} is in ΣB(τ ′′). Moreover, notice that

{σ|supp τ ′∩ supp τ ′′ : σ ∈ Λ} = {σ′|supp τ ′∩ supp τ ′′ : σ′ ∈ Λ′}

= {σ′′|supp τ ′∩ supp τ ′′ : σ′′ ∈ Λ′′}.

Now define

γ′σ(a, θ) :=
∑

t∈supp τ ′

σ|supp τ ′(a|t)pτ ′(θ, t) ∀ (a, θ)

γ′′σ(a, θ) :=
∑

t∈supp τ ′′

σ|supp τ ′′(a|t)pτ ′′(θ, t) ∀ (a, θ),

so that OΛ′(τ
′) = {γ′σ : σ ∈ Λ} and OΛ′′(τ

′′) = {γ′′σ : σ ∈ Λ}. Since pτ =

αpτ ′ + (1− α)pτ ′′ , (23) implies that for all σ ∈ Λ, a and θ

γ(a, θ) =
∑

t∈supp τ

σ(a|t)(αpτ ′(θ, t) + (1− α)pτ ′′(θ, t))

= α
∑

t∈supp τ ′

σ|supp τ ′(a|t)pτ ′(θ, t) + (1− α)
∑

t∈supp τ ′′

σ|supp τ ′′(a|t)pτ ′′(θ, t)

= αγ′(a, θ) + (1− α)γ′′(a, θ).

Hence, OΛ(τ) = αOΛ′(τ
′) + (1− α)OΛ′′(τ

′′).

Lemma 3. The function w is linear over C.

Proof. Take any τ ′, τ ′′ ∈ C and α ∈ [0, 1] and let τ = ατ ′+(1−α)τ ′′. By Proposition

4, we know that for all sequences (Λn) in ΣB(τ), there exist sequences (Λ′n) in ΣB(τ ′)

and (Λ′′n) in ΣB(τ ′′) such that

OΛn(τ) = αOΛ′n(τ ′) + (1− α)OΛ′′n(τ ′′) ∀n.
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Since g is linear,∑
θ,a

g(OΛn(τ))(a, θ) v(a, θ) =
∑
θ,a

g(αOΛ′n(τ ′) + (1− α)OΛ′′n(τ ′′))(a, θ) v(a, θ)

= α
∑
θ,a

g
(
OΛ′n(τ ′)

)
v(a, θ) + (1− α)

∑
θ,a

g
(
OΛ′′n(τ ′′)

)
(θ, a)v(a, θ). (24)

Choose (Λ̄n) in ΣB(τ) such that w(τ) = lim
n→∞

∑
θ,a g(OΛ̄n(τ))(a, θ) v(a, θ), (Λ̄′n) in

ΣB(τ ′) such that w(τ ′) = lim
n→∞

∑
θ,a g(OΛ̄′n

(τ ′))(a, θ) v(a, θ), and (Λ̄′′n) in ΣB(τ ′′) such

that w(τ ′′) = lim
n→∞

∑
θ,a g(OΛ̄′′n

(τ ′′))(a, θ) v(a, θ). By (24) it must be that

w(τ) = lim
n→∞

∑
θ,a

g(OΛ̄n(τ))(a, θ) v(a, θ)

≤ α lim
n→∞

∑
θ,a

g
(
OΛ̄′n

(τ ′)
)
v(a, θ) + (1− α) lim

n→∞

∑
θ,a

g
(
OΛ̄′′n

(τ ′′)
)
(θ, a)v(a, θ)

= αw(τ ′) + (1− α)w(τ ′′).

Next, choose (Λ′n) in ΣB(τ ′) and (Λ′′n) in ΣB(τ ′′) such that

αw(τ ′) + (1− α)w(τ ′′) =

α lim
n→∞

∑
θ,a

g
(
OΛ′n(τ ′)

)
v(a, θ) + (1− α) lim

n→∞

∑
θ,a

g
(
OΛ′′n(τ ′′)

)
(θ, a)v(a, θ) (25)

and such that{
σ′|supp τ ′∩ supp τ ′′ : σ′ ∈ Λ′n

}
=
{
σ′′|supp τ ′∩ supp τ ′′ : σ′′ ∈ Λ′′n

}
=: Λ′′′n .

Note that the above restriction to sequences describing the same behavior over

supp τ ′∩ supp τ ′′ is without loss, because a maximizing designer must be indifferent

between their selected outcomes. Therefore, the rhs of (25) can be written as

α lim
n→∞

∑
θ,a

g
(
OΛ̃′n

(τ̃ ′)
)
v(a, θ) + (1− α) lim

n→∞

∑
θ,a

g
(
OΛ̃′′n

(τ̃ ′′)
)
(θ, a)v(a, θ)

+ lim
n→∞

∑
θ,a

g
(
OΛ′′′n (τ ′′′)

)
(θ, a)v(a, θ) (26)

for some sequences (Λ̃′n) in ΣB(τ̃ ′), (Λ̃′′n) in ΣB(τ̃ ′′), and (Λ′′′n ) in ΣB(τ ′′′), where

τ̃ ′ is the consistent distribution with support supp τ ′\ supp τ ′′, τ̃ ′′ is the consistent

distribution with support supp τ ′′\ supp τ ′, and τ ′′′ is the consistent distribution with
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support supp τ ′′ ∩ supp τ ′. By applying invariance (twice),

Λ̃n :=
{
σ : supp τ → ∆A

∣∣∣σ|supp τ̃ ′ ∈ Λ̃′n, σ|supp τ̃ ′′ ∈ Λ̃′′n and σ|supp τ ′′′ ∈ Λ′′′n

}
must be in ΣB(τ) which, together with linearity of g, ensures that equation (26) is

equal to

lim
n→∞

∑
θ,a

g
(
OΛ̃n

(τ)
)
v(a, θ) = w(τ).

Hence, we obtain w(τ) = αw(τ ′) + (1− α)w(τ ′′).

Proof of Theorem 1. Fix a prior µ0 ∈ ∆(Θ) and take any information structure

(S, π). From Proposition 1, it follows that (S, π) induces a consistent belief-hierarchy

distribution τ ∈ C such that margΘ pτ = µ0. By definition of ΣB and w, we have

V (S, π) ≤ w(τ) and, thus, sup(S,π) V (S, π) ≤ sup{w(τ)|τ ∈ C and margΘpτ = µ0}.
Moreover, Proposition 1 also implies that, for τ ∈ C such that margΘ pτ = µ0, there

exists an information structure (S, π) that induces τ and such that V (S, π) = w(τ).

Therefore, sup(S,π) V (S, π) ≥ sup{w(τ)|τ ∈ C and margΘ pτ = µ0}. We conclude

that

sup
(S,π)

V (S, π) = sup
τ∈C

margΘ pτ=µ0

w(τ). (27)

By Proposition 3, there exists a unique λ ∈ ∆f (CM) such that τ =
∑

e∈supp λ λ(e)e.

Since p and marg are linear,

margΘpτ = margΘp
∑
e λ(e)e =

∑
e∈supp λ

λ(e)margΘpe.

Then, by Lemma 3 and (27), we have

sup
(S,π)

V (S, π) = sup
λ∈∆f (CM)

∑
e

w(e)λ(e)

subject to
∑
e

margΘpe λ(e) = µ0,
(28)

which concludes the proof.
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B. Appendix of The Application

B.1. Bandwagon Effect and Extreme Pessimism

We first show that, given the structure of the worst equilibrium, in any optimal

distribution with m hierarchies in total, an agent invests at hierarchy ti in the worst

equilibrium if and only if ti rationalizes I uniquely based on beliefs of order m or

lower.

Lemma 4. (Bandwagon Effect)

Suppose τ ∗ is an optimal belief-hierarchy distribution. Let m =
∑
i=1,2

|supp τ ∗i |. Then,

for all i and ti ∈ supp τ ∗i , σMIN
i (I|ti) = 1 if and only if ti ∈ ∪mk=1ρ

k
i .

Proof. The “if” part follows from (14) and ∪mk=1ρ
k
i ⊆ ∪k≥1ρ

k
i . The “only if” part we

prove by contradiction. Suppose t̂i ∈ supp τ ∗i and σMIN
i (I|t̂i) = 1, but t̂i /∈ ∪mk=1ρ

k
i .

Then, by (14) it must be that t̂i ∈ ∪k≥m+1ρ
k
i . Notice that ρki ⊆ ρk+1

i for all k ≥ 1.

Thus, for any ti ∈ ρi, there exists a number k∗(ti) ∈ N+ such that ti ∈ ρk
∗(ti)
i and

ti /∈ ρk
∗(ti)−1
i , where ρ0

i = ∅. That is, k∗(ti) is the smallest k such that ti ∈ ρki . Let

n ≥ 1 be such that k∗(t̂i) = m+ n. That is, t̂i ∈ ρm+n
i and by definition

β∗i ({θ = 2} × Tj|t̂i) +
1

3
β∗i (Θ× ρm+n−1

j |t̂i) >
2

3
,

while t̂i /∈ ρm+n−1
i and thus

β∗i ({θ = 2} × Tj|t̂i) +
1

3
β∗i (Θ× ρm+n−2

j |t̂i) ≤
2

3
.

This implies β∗i (Θ × ρm+n−1
j |t̂i) > β∗i (Θ × ρm+n−2

j |t̂i), hence ρm+n−2
j ( ρm+n−1

j .

Therefore, there exists t̃j ∈ ρm+n−1
j such that t̃j /∈ ρm+n−2

j , hence k∗(t̃j) = m+n−1.

By the same argument, there exists t̃i such that k∗(t̃i) = m+n− 2, and so on. This

process continues for m + n − 1 steps in total, i.e. there needs to be t̄j such that

k∗(t̄j) = 1 if m+n is even or t̄i such that k∗(t̄i) = 1 if m+n is odd. Hence, there need

to be at least m+ n different hierarchies, which contradicts m =
∑
i=1,2

|supp τ ∗i |.

An implication of Lemma 4 is that there is an optimal τ ∗ such that for every

k = 2, ...,m it holds that either supp τ ∗i ∩ ρki = ∅ for i = 1, 2 or supp τ ∗i ∩ ρki = tki ,

supp τ ∗i ∩ ρk−1
i = ∅, and supp τ ∗j ∩ ρk−1

j = tk−1
j for j 6= i, i = 1, 2. Next, we show

that it is never optimal to induce a belief hierarchy at which an agent has multiple

rationalizable actions. In particular, the hierarchies which rationalize action N are

optimally set to have first-order beliefs of 0, i.e., extreme pessimism.
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Lemma 5. (Extreme Pessimism)

If τ ∗ is an optimal belief-hierarchy distribution and if there is a BNE σ such that

σi(N |ti) > 0 for some i and ti ∈ supp τ ∗i , then β∗i (θ = 2|ti) = 0.

Proof. Consider a consistent and Bayes plausible optimal minimal distribution τ

centered at µ > 0. First, we argue that, since τ is optimal, it must be that for both

i there exists ti ∈ supp τi such that ti ∈ ρi. If not, τ would be strictly dominated

by τ̂ = x · t 2
3

+ε + (1− x) · t0 with x = min
{

µ
2
3

+ε
, 1
}

, where tµ̄ is a hierarchy profile

at which β∗i (θ = 2|ti) = µ̄ for all i is common knowledge. Indeed, the designer’s

expected payoff under τ̂ in the worst equilibrium is x · v(I, I) + (1 − x) · v(N,N).

Instead, if for some i, ti /∈ ρi for all ti ∈ supp τi, the designer’s expected payoff is

bounded above by x · v(I,N) + (1− x) · v(N,N), which is strictly smaller than the

payoff under τ̂ .

By way of contradiction, suppose that for some agent i we have t̃i ∈ supp τi such

that t̃i /∈ ρi and β∗i (θ = 2|t̃i) > 0. Therefore, in the worst equilibrium, agent i will

play N at t̃i, i.e., σMIN
i (I|t̃i) = 0.

By Lemma 4, we know that any investing ti is in ∪mk=1ρ
k
i and there is a unique

tki ∈ (ρk1∪ρk2)∩supp τi. Consider the distribution p′ obtained from pτ by transferring

all the probability mass
∑

tj
pτ (t̃i, tj, θ = 2) as described below. This operation

changes the hierarchies in supp pτ according to fi : supp margTipτ → supp margTip
′

for all i.

(A) – If supp τi ∩ ρ1
i 6= ∅, then p′(fi(t

1
i ), fj(tj), θ = 2) = pτ (t

1
i , tj, θ = 2) +

pτ (t̃i, tj, θ = 2) for all tj;

– If supp τi ∩ ρ1
i = ∅ and m is even, then p′(fi(t

2k
i ), fj(t

2k−1
j ), θ = 2) =

pτ (t
2k
i , t

2k−1
j , θ = 2) + pτ (t̃i, t

2k−1
j , θ = 2) for all k = 1, ...,m/2;

– If supp τi ∩ ρ1
i = ∅ and m is odd, then p′(fi(t

2k
i ), fj(t

2k−1
j ), θ = 2) =

pτ (t
2k
i , t

2k−1
j , θ = 2) + pτ (t̃i, t

2k−1
j , θ = 2) for all k = 1, ..., (m+ 1)/2, where

tm+1
i is a new hierarchy with p′(tm+1

i , fj(tj), θ = −1) = 0 for all tj.

(B) p′(fi(t̃i), fj(tj), θ = 2) = 0 for all tj, and

(C) p′(fi(ti), fj(tj), θ) = pτ (ti, tj, θ) otherwise.

Now, consider the belief-hierarchy distribution τ ′ induced by p′. By construction

of p′, (A)-(C) ensure that the beliefs of all (relevant) orders have weakly increased

for both agents in all hierarchies, except for t̃i. Therefore, if agent i with hierarchy

ti ∈ Ti\{t̃i} has uniquely rationalizable action I, and hence plays I in any equilibrium

under τ , this also holds for agent i with hierarchy fi(ti) under τ ′. On the other

hand, agent i with hierarchy t̃i played N in the worst equilibrium under τ , and
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this continues to hold for agent i with hierarchy fi(t̃i) under τ ′. Moreover, τ ′ is

necessarily Bayes plausible (since it is induced by p′). Finally, again by construction

of p′, probability mass has only been transferred from non-investing to investing

types, hence a designer with symmetric and monotone payoffs must have a strictly

higher expected payoff under τ ′ than under τ , a contradiction.

B.2. Characterization of the Optimal Minimal Distributions

The above lemmas imply that optimal design takes a special form in this example.

First, if it is necessary to induce N , then by Lemma 5 the designer should do it by

making the agent extremely pessimistic about the state. In this way, for a given µ,

the designer can put higher probability on hierarchies that induce I. Second, Lemma

4 implies that optimal design incentivizes joint investment through contagion, which

we call the “bandwagon effect.” To uniquely rationalize joint investment, based on

agents’ beliefs of bounded order, some hierarchy of an agent must initiate investment

by having first-order beliefs greater than 2/3. For any given µ, it is never optimal

to put mass on more than one such “first-order investor” hierarchy, because we can

induce the other agent to invest at lower (than 2/3) first-order beliefs, if he puts

a sufficiently high probability on that first-order investor. Likewise, it is optimal

to have only one such “second-order investor”, as we may induce the agent with

the first-order investor hierarchy to now invest at a different hierarchy with even

lower first-order beliefs, if he puts a sufficiently high probability on that second-

order investor hierarchy of his opponent. By proceeding in this way, we generate the

lowest possible first-order beliefs overall, and thus generate joint investment with

certainty at the lowest possible state distribution µ. When joint investment can

no longer be sustained, and N has to played with positive probability, we set the

first-order beliefs of the highest-order investor hierarchies to 0, by virtue of Lemma

5.

For an arbitrary m <∞, suppose the designer sends m messages in total in the

maximization within. Let us index each hierarchy of agent 1 by l = 1, . . . , L and of

agent 2 by r = 1, . . . , R. By Lemmas 5 and 4, the optimal minimal distributions

will have either L = R = m
2

if m is even, or L = m+1
2

and R = m−1
2

if m is odd.

Given a commonly known µ := Prob(θ = 2), denote an optimal minimal distri-
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bution e∗µ by

e∗µ t2,1 . . . t2,r . . . t2,R

t1,1 A11 · · · A1r . . . A1R

...
...

...
...

...
...

t1,l Al1 · · · Alr . . . AlR
...

...
...

...
...

...

t1,L AL1 · · · ALr . . . ALR

where all entries Alr are positive and
∑

l,r Alr = 1. Define A1
l :=

∑
r Alr and

A2
r :=

∑
lAlr. Let µl1 := β∗1(θ = 2|t1,l) and µr2 := β∗2(θ = 2|t2,r) denote the agents’

first-order beliefs at the respective hierarchies.

For µ > 2
3
, the optimal minimal distribution is given by Table 5, where µ1

i = µ

e∗µ t2,1

t1,1 1

Table 5: Optimal Minimal Distributions for µ ≥ 2/3

for i = 1, 2. The designer simply lets agents act under common knowledge of µ, as

investment is uniquely optimal in this range.

For µ ≤ 2
3
, the following system yields the optimal minimal distributions e∗µ such

that all agents invest at all ti:

∑
r A1rµ

1r

A1
1

>
2

3
(29)∑

lAlrµ
lr

A2
r

+
1

3

∑r
l=1 Alr
A2
r

>
2

3
for r = 1, . . . , R (30)∑

r Alrµ
lr

A1
l

+
1

3

∑l−1
r=1 Alr
A1
l

>
2

3
for l = 2, . . . , L (31)∑

l,r

Alrµ
lr = µ (32)

where µlr := β∗(θ = 2|t1,l, t2,r) denotes the designer’s belief that θ = 2 given the

profile of agents’ hierarchies (t1,l, t2,r). We have used Proposition 2 and Lemma 4 to

construct this system (29) – (32). Indeed, we have incorporated conditions (7) to

(9) from Proposition 2: all agents’ first-order beliefs should be a τ(t−i|ti)-weighted
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average of the designer’s beliefs. For example, in (29)

µ1
1 :=

∑
r A1rµ

1r

A1
1

represents agent 1’s (first-order) belief that θ = 2 at t1,1. Likewise, the first expres-

sions on the LHS of (30) and (31) represent first-order beliefs µr2 and µl1, respectively.

Condition (32) captures (7) from Proposition 2.

Inequalities (29) to (31) are the investment constraints inherited from the equi-

librium characterization in (14) and Lemma 4. As discussed above, some agent must

have a hierarchy at which he is the first-order investor. Without loss, choose t1,1 to

play that role and require µ1
1 >

2
3

(this is (29)). Choose t2,1 to be the second-order

investor, who invests based on second-order beliefs, i.e., t2,1 ∈ ρ2
2. This is equivalent

to µ1
2 + 1

3
β∗2(t1,1|t2,1) > 2

3
, where

µ1
2 :=

∑
lAl1µ

l1

A2
1

β∗2(t1,1|t2,1) :=
A11

A2
1

. (33)

This is precisely (30) for r = 1, where (33) is 2’s second-order belief that t1 ∈ ρ1
1.

Given that agent 2 invests based on second-order beliefs at t2,1, agent 1 invests based

on third-order beliefs if t1,2 ∈ ρ3
1, which is equivalent to condition (31) for l = 2,

and so on. In conclusion, the system (29)-(32) describes the most efficient way of

inducing joint investment with probability 1. If the system has a solution, it must

be e∗µ.

Proof of Claim 1. “Only if”: By way of contradiction, suppose that e∗µ induces joint

investment with certainty at µ ≤ 1/2. Then, e∗µ must solve (29)-(32). Adding up

inequalities (29) and (31) for l = 2, . . . , L, we obtain:

∑
l,r

Alrµ
lr >

2

3

∑
l

A1
l −

1

3

L∑
l=2

l−1∑
r=1

Alr

which can be rewritten as

µ >
2

3
− 1

3

L∑
l=2

l−1∑
r=1

Alr (34)
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using equation (32). Adding up equations (30) for r = 1, . . . , R, we similarly obtain:

µ >
2

3
− 1

3

∑
r

r∑
l=1

Alr. (35)

Notice that
∑L

l=2

∑l−1
r=1 Alr +

∑
r

∑r
l=1Alr =

∑R
r

∑L
l Alr = 1. Therefore, adding up

equations (34) and (35) we get 2µ > 2 · 2
3
− 1

3
, which implies µ > 1

2
.

“If”: Suppose that µ > 1/2. For µ > 2/3, e∗µ in Table 5 induces joint investment

with certainty. For µ ∈ (1/2, 2/3), it can be easily checked that e∗µ in Table 3 is a

solution to the system (29)-(32) with R = 1 and L = 2, and hence induces joint

investment with certainty.

From Claim 1 we know that for µ ≤ 1/2, the designer can no longer ensure I

will be played at all hierarchies. By Lemma 5, the hierarchies at which N is played

must have first-order beliefs of zero. To obtain the optimal minimal distributions

for µ ≤ 1/2, we set

µR2 :=

∑
lAlRµ

lR

A2
R

= 0 (36)

and replace (30) for r = R with it. We then find the smallest µ for which the system

has a solution and repeat this procedure by setting µL1 = 0 and replacing (31) for

l = L with it, and so on.

Proof of Claim 2. Consider the case when the last K types of agent 1 and the last

K types of agent 2 do not invest.18 This means that the system becomes



∑
r

A1rµ
1r >

2

3
A1

1 (37)

∑
l

Alrµ
lr >

2

3
A2
r −

1

3

r∑
l=1

Alr for r = 1, . . . , R−K (38)

∑
r

Alrµ
lr >

2

3
A1
l −

1

3

l−1∑
r=1

Alr for l = 2, . . . , L−K (39)∑
l

Alrµ
lr = 0 for r = R−K + 1, . . . , R (40)∑

r

Alrµ
lr = 0 for l = L−K + 1, . . . , L (41)∑

l,r

Alrµ
lr = µ (42)

18Notice that the only options are that the last K types of both agents do not invest, or the last
K types of agent 1 and K − 1 types of agent 2 do not invest.
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where the first-order beliefs of the last K non-investing types of both agents have

been set equal to zero. Adding up each side of the inequalities corresponding to

agent 1 ((37), (39), and (41)) and using (42), we get:

µ >
2

3

L−K∑
l=1

A1
l −

1

3

L−K∑
l=2

l−1∑
r=1

Alr =
2

3

L−K∑
l=1

R−K∑
r=1

Alr +
2

3

L−K∑
l=1

R∑
r=R−K+1

Alr −
1

3

L−K∑
l=2

l−1∑
r=1

Alr

(43)

and correspondingly for agent 2 (adding up each side of (38) and (40)):

µ >
2

3

R−K∑
r=1

A2
r−

1

3

R−K∑
r=1

r∑
l=1

Alr =
2

3

L−K∑
l=1

R−K∑
r=1

Alr +
2

3

L∑
l=L−K+1

R−K∑
r=1

Alr−
1

3

R−K∑
r=1

r∑
l=1

Alr.

(44)

Summing up the above two equations we obtain:

2µ >
L−K∑
l=1

R−K∑
r=1

Alr +
2

3

L−K∑
l=1

R∑
r=R−K+1

Alr +
2

3

L∑
l=L−K+1

R−K∑
r=1

Alr, (45)

where we have used that:

1

3

L−K∑
l=2

l−1∑
r=1

Alr +
1

3

R−K∑
r=1

r∑
l=1

Alr =
1

3

L−K∑
l=1

R−K∑
r=1

Alr.

Notice that (45) can be written as:

2µ > Pr(both invest) +
2

3
Pr(only 1 invests) +

2

3
Pr(only 2 invests). (46)

Multiplying both sides by v(I, I) > 0, we obtain:

2µv(I, I) > v(I, I)

[
Pr(both invest) +

2

3
Pr(only 1 invests) +

2

3
Pr(only 2 invests)

]
.

(47)

Notice that the left-hand side of this inequality is (cav w̃∗)(µ) for µ ≤ 1/2. Let us

denote the right-hand side of (47) by RHS(47). The designer’s expected value at

any optimal e∗µ ∈ CM with m messages can be written as

Ee∗µ [v] = v(I, I) Pr(both invest)

+ v(I,N) Pr(only1 invests) + v(N, I) Pr(only 2 invests). (48)
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Then,

RHS(47)− Ee∗µ [v] =

(
2

3
v(I, I)− v(N, I)

)
Pr(only 1 invests)

+

(
2

3
v(I, I)− v(N, I)

)
Pr(only 2 invests). (49)

Hence, if 2
3
v(I, I)− v(N, I) ≥ 0, RHS(47) ≥ Ee∗µ [v]. This in turn implies

(cav w̃∗)(µ) > Ee∗µ [v]

for µ ≤ 1/2 and for any optimal e∗µ ∈ CM .
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