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1 Introduction

Repeated interactions are often governed by a form of convention, at least in the long
run. Colleagues who regularly go to lunch together alternate who pays the bill; pedes-
trians in a city choose to walk on the same side of the footpath every day (to pass each
other); and non-violence can settle in over long periods between enemy soldiers at war
(Axelrod (1984)). Which conventions do we expect to emerge and stay? On the one
hand, the standard theory of repeated games is not very discriminating in this matter, as
patient players would do anything to avoid future punishments. On the other hand, the
learning literature offers a plethora of learning models and of answers.1 This severe mul-
tiplicity creates a lack of perspective, as if conventions obeyed no general principles. A
closer look at the literature reveals that common forces are at work in the construction
of social norms: efficiency (Ray (1994)); complexity (Abreu and Rubinstein (1988));
justifiability (Spiegler (2005)); etc. The time may be ripe for a different perspective that
puts these forces at the center of the analysis.

In this paper, we introduce a framework—not explicitly based on standard equilib-
rium or learning analysis—in which we can express, combine, and compare various
principles to study conventions. Suppose that players eventually enter into a pattern of
action profiles, which we call a “convention.” Do some conventions seem more plau-
sible than others? This question refers to norms that we might expect players to arrive
at and settle on. To answer this question, we propose axioms that conventions might
satisfy and characterize those that satisfy all axioms.

This framework generalizes axiomatic bargaining (Nash (1950), Kalai and Smorodin-
sky (1975), etc.) and Harsanyi and Selten (1988, Chapter 3). Since conventions induce
distributions of action profiles that, in turn, produce payoffs, any axiom on payoffs (as
in axiomatic bargaining) or on distributions over action profiles (as in Harsanyi and Sel-
ten) can be expressed as an axiom on conventions. This matters because payoffs have
no strategic content without actions and distributions have no time structure. We use
this framework in environments with two completely patient players (i.e., whose payoff

functions are given by the limit of means) and perfect monitoring. We illustrate the
framework with a few axioms, the implications of which are mathematically straight-
forward but thought-provoking.2

1When we vary the initial conditions of learning models, allow different players to follow different
learning rules, and allow learning to change over time, the set of all learning predictions explodes.

2Among other things, the framework shows that extreme multiplicity is sometimes questionable.
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We also include experimental evidence from Mathevet and Romero (2012) that sup-
ports our solution. The data consist of over 400 sequences generated by human subjects,
who played eight different stage games for more than 100 periods on average. We used
pattern detection algorithms to extract all sequences that exhibit a pattern, which rep-
resents about 2/3 of the data. Overall, at least 80% of the observed patterns satisfy the
combination of our strictest axioms.

Our particular axioms tell the following story: players try creating surplus from
their interaction, but they also fight over the distribution of the surplus. Consider the
following examples:
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Dinner Game

In Stag Hunt, two individuals go out on a hunt every day. Each can choose to hunt a stag
or a hare. Assume that the history of play becomes common knowledge after each period
and that players are completely patient. Consider the convention ((S ,H)(H, S ) . . .), in
which players miscoordinate forever. The axiom of individual rationality will eliminate
this convention because each player earns strictly less, on average, than what she could
secure by playing action H every period.

Now consider the convention ((H,H)(S , S ) . . .), in which players alternate forever
between hunting a hare and a stag. The axiom of efficient simplicity will eliminate this
convention. The idea is simple: players would not increase the complexity of their
conventions to both earn less. In the above, the alternation not only is more complicated
(than just playing the good outcome), but it also harms both players. In other words,
players complexify their social norms only if doing so benefits at least one of them;
otherwise, they would not do it.

Multiplicity is important to explain the richness of outcomes in the observed world, but ‘extreme’
multiplicity—according to which nearly everything is possible—denies regularities in human behavior.
In this framework, many axioms and solutions can be thought of and hence there is also a form of multi-
plicity. However, this criticism is of orders of magnitude less here, because to each given set of axioms
on conventions (observables) we can build infinitely many models (based on unobservable constructs)
satisfying them.
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While simplicity is a feature of our social norms, instability can result from excessive
simplicity. Consider the dinner game. The row player is a child and the column player
is the parent, and they play the game every day before dinner. The child chooses to eat
a cookie (E) or to not eat it (Ē). The parent decides to punish (P) or to not punish (P̄)
the child. The child has a dominant action in eating the cookie, and the parent prefers to
punish the child only if she eats the cookie. Consider the convention ((E, P̄)(Ē, P̄) . . .),
in which the child eats the cookie one time out of two and the parent never punishes
the child. The axiom of stability eliminates this convention. The idea is that a player
may behave myopically unless she has reason to believe that her behavior might get
punished.3 In the above, the child never suffers the negative consequence of eating the
cookie and, thus, she may start eating it more often and destabilize the convention.

As shown above, patterns of play are selected based on what happens in the pattern
itself. This emphasizes observed events and the self-sustainability of conventions. Note
that the framework is agnostic about whether the outcomes come from a naive or a
sophisticated reasoning process. In particular, we do not explicitly model players’ off-
path behavior. By standard folk theorems, however, one can think of conventions as
equilibrium paths of play, as long as they produce individually rational payoffs. In
this perspective, the idea is that on-path considerations drive equilibrium selection and
discipline what happens off-path implicitly (see Footnote 3 for a concrete example).
This kind of consideration already appears in Rubinstein (1986) and his notion of semi-
perfect equilibrium, where threats should be played on the path or else disappear from
a player’s machine to save on the maintenance costs. It also appears in Spiegler (2005)
and his notion of Nash equilibrium with tests, where past events observed on the path
justify current responses on the path.

In the paper, we first introduce stability and then propose a weak and a strong axiom
of efficient simplicity. Then we characterize our main solution: the theorem states that
conventions should be constant repetitions of a static Nash equilibrium or such that
players switch between two Pareto unranked profiles across which they both change
actions. This implies that solution payoffs are line segments, which is reminiscent of
Abreu and Rubinstein (1988). We document the difference in examples. In some games,
as in Stag Hunt, the only conventions that survive our two weakest axioms are constant

3Although we do not model what happens off-path, the axiom of stability could be seen as requiring
that players assign zero probability to all actions of their opponent that they have not observed in a very
long time. That is, in a standard equilibrium analysis, a player would not believe that her opponent can
do off-path what she is not doing on path.
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repetitions of a static Nash equilibrium. Thus, to obtain more outcomes, players must
either be individually irrational or increase the complexity of their social norms to both
earn less. In the Supplement, we also classify all stage games into families, based on
geometric properties of their feasible payoffs, and mathematically tie each family to the
degree of players’ sophistication required by the strong axiom of efficient simplicity.

This paper connects different branches of the literature. Efficient simplicity is in the
spirit of renegotiation proofness (Bernheim and Ray (1989), Farrell and Maskin (1989)),
and stability is in the spirit of Spiegler (2005)’s Nash equilibrium with tests. Our char-
acterizations are also reminiscent of the literature on bounded rationality (Abreu and
Rubinstein (1988)). The axiomatic treatment of repeated games is novel, with the ex-
ception of the recent paper by Blonski, Ockenfels, and Spagnolo (2011) in which the
authors propose an axiomatic framework for selecting equilibria in the repeated Pris-
oners’ Dilemma. They define a solution as a subset of the (stage game) payoffs and
discount factors for which some cooperation should arise on the path. Their axioms
characterize a unique solution.

The paper is organized as follows. Section 2 presents the framework. Sections 3 and
4 introduce the axioms. Section 5 contains the characterizations. Section 6 studies basic
properties of our solutions: payoff invariance and existence. Section 7 discusses the
interpretation of the approach and offers experimental evidence. Section 8 concludes.
Proofs are in the Appendix.

2 Preliminaries

2.1 The Model

We consider repeated interactions between two players. Let G = (A1, A2, u1, u2) be a
finite two-person game in normal form, where Ai is player i’s finite action set; A =

A1×A2 is the set of action profiles; and ui : A→ R is i’s utility function. Let Σi be i’s set
of mixed actions with typical element αi. The utility functions are extended to mixed
actions by taking expectations. Let

ui(G) = max
αi∈Σi

min
a j∈A j

ui(αi, a j) (1)
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denote player i’s maxmin payoff. In stage game G, we assume that action profiles give
rise to non-collinear payoffs and that ui(G) > ui(a) whenever a player i obtains the same
utility ui(a) = ui(a′) across two distinct action profiles a and a′.4

A repeated interaction consists of an infinite sequence of repetitions of a (commonly
known) stage game G at discrete time periods t = 1, 2, . . . In every period t, the players
make simultaneous moves—denoted by at

i ∈ Ai—that become common knowledge.
These choices can be realizations of randomization devices.

A player’s payoff will be evaluated by her average utility. Given a sequence s =

(s1s2 . . .), where st = (at
1, a

t
2) ∈ A, let πi(s) = lim infT→∞ 1/T

∑T
t=1 ui(st).5 This specifi-

cation assumes that players are completely patient. There are two reasons for studying
this case. The first one is simplicity—for now, we want to abstract away from patience
issues. Second, since complete patience is associated with severe equilibrium multiplic-
ity, selection is especially useful in this case.

2.2 Conventions

This section introduces the notion of convention. A sequence s = (s1s2 . . . ) has conver-
gent frequencies if

lim
T→∞

T∑
t=1

1{st=a}/T ∈ [0, 1]

for all a ∈ A. A sequence s is cyclic if there exist a time T and a non-negative number
`(s) (called the length of the cycle) such that st = st+`(s) for all t ≥ T , and there is no
` < `(s) for which st = st+` for all t ≥ T . That is, there is a time after which some fixed
pattern repeats itself forever.

Definition 1. A convention in a repeated game is a sequence with convergent frequen-
cies such that any action profile that appears once appears infinitely often.

Axiomatized conventions will represent the plausible outcomes of the repeated game.
This interpretation does not prevent a normative use of our framework, in which con-
ventions would be interpreted as normative outcomes, but it is not our point of view in
this paper. See Section 4.2 for a discussion.

4These assumptions are generic. Recall that non-collinearity means that for any a1, a2, a3 in A, u(a1),
u(a2), and u(a3), where u(a) = (u1(a), u2(a)), must not lie on a line.

5The liminf is the infimum of the cluster points of (st), the sequence of average payoffs from 1 to t.
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Some action profiles can have zero frequency in a convention and yet appear in-
finitely often. These profiles or actions are called occasional and are played less and
less frequently as time passes. As such, they are a basic expression of learning within
a convention and describe an evolution of habits in time (for example, players could
punish each other less and less in time out of resignation or unnecessity). Note also that
players are allowed to play mixed actions, in which case a convention is the realization
of random play. Mixed strategies, public randomization devices and regular Markov
chains all produce conventions.

As is well-known, automaton strategies produce cyclic conventions (Abreu and Ru-
binstein (1988)). The fact that a fixed pattern repeats itself forever gives a time structure
to cyclic conventions that can be exploited by the axioms. When axioms do not exploit
the time structure of cyclic conventions, they are equivalent to axioms on distributions
over action profiles. See Section 7.2 for a discussion.

Note also that (non-pure) mixed action cycles typically will induce non-cyclic con-
ventions. This is also true for automata with probabilistic state transitions.

In what follows, fix a stage game G and let π � π′ mean that π strictly Pareto
dominates π′, i.e., πi > π

′
i for all i.

3 Stability

For any convention s, define

R(s) = {a ∈ A : st = a for some t}, (2)

R j(s) = {a j ∈ A j : ∃ai ∈ Ai s.t. a ∈ R(s)}

Γ(s) = {(u1(a), u2(a)) : a ∈ R(s)}

to be the set of action profiles, actions of player j, and payoff profiles that appear in
convention s.6 Consider the following axiom:

Axiom 1. s is such that no i has a mixed action αi ∈ Σi that satisfies ui(αi, a j) > πi(s)
for all a j ∈ R j(s).

If a player can do strictly better by playing a mixed action—against every action
played by the other player in the convention—than by following the convention, then

6By definition of a convention, if a profile appears once, it appears infinitely often.

7



she might play that mixed action and destabilize the convention. Quite simply, if a
player has such a mixed action, then she may want to try it.

This axiom is especially plausible in a world with bounded memory: if a convention
is to stay in place forever, then players may eventually forget what happened in the
early stages, and so every player i may eventually believe that j’s actions are confined
to R j(s) (that is, every player may eventually assign zero probability to all actions that
her opponent has not played in a very long time). This condition on beliefs is enough
to imply the axiom in a standard equilibrium analysis. As a consequence, players must
display in their conventions the arguments deterring one another from deviating.7

Take the Prisoners’ Dilemma (on p.22), and let a = (C,C) and b = (D,C). The
fully cooperative convention s = (aa . . .) is discarded by the axiom because u1(D,C) =

4 > 2 = π1(s), and the convention s′ = (ab . . .) is also discarded for a similar reason.
In both s and s′, player 2 never retaliates, so that player 1 might want to try defecting
more often. In this game, Axiom 1 eliminates all cyclic conventions that give a payoff

profile on the boundary of the feasible payoffs. For cyclic conventions s that generate an
interior payoff profile, Axiom 1 requires nothing more than individual rationality (i.e,
π(s) ≥ (2, 2)), because, for such s, Ri(s) = Ai for all i. In the Prisoners’ Dilemma,
therefore, the payoff set associated with cyclic conventions that survive this axiom is
the set of individually rational payoffs in Q2 excluding the Pareto frontier.

While the above argument applies to cyclic conventions, moving beyond cyclic con-
ventions can get us to the Pareto frontier. Imagine if the players play D for every prime
t. Then, D occurs occasionally, and hence leaves the payoffs unchanged. At the same
time, now D no longer does strictly better against every observed action of the oppo-
nent. Therefore, we can sustain cooperation and hence the frontier. This argument and
the benefit of occasional strategies are developed in Section 5.

7This is related to justifiability à la Spiegler (2005). In Spiegler’s equilibrium concept, players play,
on the equilibrium path, myopic best responses to what they observe until they get punished for it (on the
path), and only the presence of punishments on the path allows them to justify to themselves why they
should play non-myopic actions and dynamically optimize.
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4 Efficient Simplicity

4.1 Axioms

Most notions of complexity agree that playing a single action profile is simpler than
playing it among others. Thus, players would rather play a single action profile than
play it as part of a more elaborate convention that decreases their payoffs:

Axiom 2. s is such that no a ∈ R(s) satisfies u(a) � π(s).8

Think of choosing which side of the footpath to walk on everyday. Most pedestrians
choose the same side every day to pass each other, left or right, while changing sides
depending on the day would make matters more complicated and provide no benefit.
Note that humans did not adopt complex pedestrian norms, and then cooperated to move
to simpler ones. It is just that complex ones never occurred in the first place. Following
this logic, a group may first consider simple conventions, constant in particular, and
only complexify them if this benefits at least one member of the group. In this sense,
any s having a ∈ R(s) such that u(a) � π(s) would not occur in the first place. If one
agrees with this logic, there is no learning needed to transition from s to a, since the
former never occurs. A related but different justification of this axiom is dynamic in
nature: if a group makes an error and adopts s having a ∈ R(s) such that u(a) � π(s),
then it is plausible that the group would eventually think of a and coordinate on it by
some adjustment process (unspecified here).

On a different note, observe that, unlike this axiom, Pareto efficiency (π(s) lies on
the Pareto frontier of the feasible payoffs) says nothing about complexity.

Apart from repeating one profile, there could be other social arrangements that are
simpler than a given convention. If it is simpler to play one profile than to alternate
between two, then perhaps it is simpler to play shorter cycles in general. And so, we
could use the length `(·) of a cycle as complexity measure.9

Now, using measure `(·), let us imagine that players can complexify their social
norms up to a certain limit when this benefits them. This is Axiom 3(n).

8This axiom will be invoked in the context of cyclic conventions.
9This is a natural but coarse measure. Given a convention of length `, there always exists a pair

of automata with, at most, ` states that produce this convention. Automata also specify off-equilibrium
behaviors that are not taken into account here. Of course, there exist other measures of complexity, based,
for example, on data compression, such as Kolmorogov complexity. Similar axioms can be defined, and
other solutions derived, under these other measures.

9



Definition 2. A convention s′ is at most n ∈ N times more complex than s if `(s′) ≤ n`(s)
and R(s′) ⊆ R(s).10

Axiom 3(n). s is such that no s′ that is at most n times more complex than s satisfies
π(s′) � π(s).

For n = 1, this axiom says that players would not increase the complexity `(·) of
their conventions—and play s rather than s′—to both earn less. For n > 1, however,
players can complexify their conventions “by a factor of at most n”11 when this benefits
them. To avoid characterizing a solution for every n, we focus on Axiom 3(∞) instead,
defined as follows:

Axiom 3(∞). s is such that no s′ satisfying R(s′) ⊆ R(s) also satisfies π(s′) � π(s).

This axiom drops the complexity requirement and allows players to form cyclic
conventions of any complexity or even “non-cyclic” conventions, as long as they play
action profiles only from s. Importantly, in the Supplement to this paper, we classify all
stage games into families {n : n ∈ N} such that, in family n, s survives Axiom 3(n) if
and only if it survives Axiom 3(∞). This result tells us that characterizations involving
Axiom 3(∞) are identical to those we would obtain with the much weaker Axiom 3(n)
provided G is in family n.

We now reformulate Axiom 3(∞) in the lemma below.

Definition 3. A sequence s′ is a subsequence of s if there exists a strictly increasing
function h : N→ N such that s′ t = sh(t) for all t.

Axiom 3. s is such that no subsequence s′ of s satisfies π(s′) � π(s).

Lemma 1. Any s survives Axiom 3(∞) if and only if s survives Axiom 3.

Proof. Since the requirement that R(s′) ⊆ R(s) is equivalent to the requirement that s′

is a subsequence of s, both axioms are equivalent. �

If a convention s contains another convention s′ that strictly benefits both players,
then Axiom 3 rules s out, the idea being that players would eventually play the latter

10Here, we do not even rely on profiles played outside s, especially since players have not shown the
ability to do so.

11Some Pareto improvements might not be achieved by any s′ such that `(s′) ≤ n`(s) and require s′

with `(s′) ≥ (n + 1)`(s). So, the complexity bound has bite.
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and not s. For stage games in family n, it follows from the lemma that s survives Axiom
3(n) if and only if it survives Axiom 3.

Take the example of convention (abb . . .) in the Prisoners’ Dilemma (on p.22), where
a = (D,C) and b = (C,C). This is a strictly Pareto-improving subsequence of s =

(abac . . .), given c = (C,D), and hence s is discarded by the axiom.12

Axiom 3 allows for inefficiencies, such as ‘always defect’ in the Prisoners’ Dilemma,
but it excludes conventions in which mutually harmful behaviors co-exist indefinitely
with good ones. Finally, Pareto efficiency implies Axiom 3: if a convention is Pareto
efficient (i.e., π(s) lies on the Pareto frontier of the feasible payoffs), then it cannot
contain a Pareto improving subsequence, and thus it survives Axiom 3.

4.2 Normative or Positive?

The axioms from the previous section impose different forms of collective rationality. In
a model where communication is not modeled explicitly, and where there is no explicit
centralized process, do these axioms seem plausible?

First, the degree of collective rationality varies greatly from Axiom 2 to Axiom 3.
There is a whole sequence of Axioms 3 (n) in between the two, in which collective
rationality increases with n ∈ N. In Axiom 2 and Axiom 3 (1), the degree of collective
rationality is so weak that a group can plausibly meet the requirement without explicit
communication.

Second, Section 7.3 reports basic results from laboratory experiments that replicated
the conditions of standard repeated games, without communication between subjects or
centralized process. These results provide evidence in support of our axioms, Axiom 3
included. Most of the games tested in the experiments belong to “family 1,”13 a family
in which s satisfies Axiom 3 if and only if it satisfies the much weaker Axiom 3 (1).
This reinforces our previous point.

Finally, the fact that communication is not modeled explicitly does not mean that it
is forbidden. Our point of view is that communication is not necessary to satisfy such
basic requirements as Axiom 2. However, greater collective rationality, as in Axiom 3,
may indeed require communication in some games. This line of argument is the same
as in Farrell and Maskin (1989) and Bernheim and Ray (1989), which introduce the re-

12To see this, remove the underlined letters from s = (abac abac abac aba . . .).
13Families of games are mentioned in the previous section and defined in the Supplement. The latter

also contains a link to a program that outputs the family of any 2 × 2 stage game entered as input.
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finement of renegotiation proofness into standard repeated games: players agree ex-ante
to play a subgame-perfect equilibrium, but they are able to renegotiate the continuation
after every period, a process which is not modeled explicitly.

5 Characterizations

The results in this section characterize, fully or partially, the set of conventions that
satisfy the axioms. Existence will be studied in Section 6.2.

5.1 Stability and Efficient Simplicity

5.1.1 Main Results

Stability is equivalent to requiring that a convention pay every player i at least as much
as she could get by playing her best mixed action in a worst-case scenario,

πi(s) ≥ max
αi∈Σi

min
a j∈R j(s)

ui(αi, a j) ∀i. (3)

The rhs is the minimal payoff that a player believes she can secure, if her beliefs give
probability zero to the unobserved actions of the other player. This expression is al-
ways weakly larger than the standard maxmin in (1), hence stability implies individual
rationality (formally defined as Axiom 4 in the next section).

A convention is individually rational if each player receives at least her maxmin
payoff (1), and it is almost constant if some action profile is played with frequency one.

Theorem 1.
(1) The set of cyclic conventions that satisfy Axioms 1 and 3 contains only cyclic in-
dividually rational s that are either (i) constant such that a static Nash equilibrium is
played in every period or (ii) such that players switch between two Pareto unranked
action profiles, a and b, with ai , bi∀i.

(2) The set of conventions satisfying Axioms 1 and 3 contains only individually rational
s that are either (i) almost constant (some a∗ is played with frequency 1) or (ii) such
that players switch between two Pareto unranked action profiles, a and b, almost all the
time. Moreover, if a∗ is not a static Nash equilibrium (because player i strictly wants to
deviate) in (i) or if a j = b j in (ii), then for each âi ∈ Ai, there is â j with ui(â) ≤ πi(s) that
player j plays occasionally.

12



Cyclic conventions are important in repeated games because this is the class gener-
ated by automata (Abreu and Rubinstein (1988)). In this case, the axioms imply that
players must play the same static Nash equilibrium in all periods, or they must switch
between two Pareto unranked profiles such that the convention is individually rational
and both change actions across these profiles. This result places significant restrictions
on the outcomes. Figure 2 in the Appendix illustrates it with well-known examples. For
repeated two-player two-action (2×2) games, the most studied case in the literature, the
first part of the theorem provides a full characterization (see Figure 2).

Corollary 1. For 2 × 2 stage games, the set of all cyclic conventions satisfying Axioms
1 and 3 is the set of individually rational s that are either (i) constant such that a static
Nash equilibrium is played in every period, or (ii) such that players switch between two
Pareto unranked action profiles, a and b, with ai , bi∀i.

Proof. From part (1) of Theorem 1, we only need to show that all cyclic individually
rational s that satisfy either (i) or (ii) also satisfy Axioms 1 and 3. Take a cyclic in-
dividually rational s that satisfies (i). Since s is constant, R(s) = {a}, and a is a Nash
equilibrium, ui(a) = maxαi∈Σi ui(αi, a j). Therefore, s satisfies Axiom 1. Any constant
convention must satisfy Axiom 3, because it has no proper subsequence. We conclude s
satisfies both axioms. Now, take a cyclic individually rational s that satisfies (ii). Since
the game is 2 × 2 and players switch between two Pareto unranked action profiles, a
and b, with ai , bi∀i, we have Ri(s) = Ai for all i. Therefore, Axiom 1 is equivalent
to individual rationality. Moreover, the alternation between two Pareto unranked action
profiles prevents the existence of a subsequence s′ of s such that π(s′) � π(s). Hence, s
satisfies Axioms 1 and 3. �

In the cyclic case, the tension between stability and efficient simplicity results in
strong selection, because it forces punishments to be used and requires some (internal)
efficiency. Beyond cyclic conventions, however—that is, if players are more sophisti-
cated than the deterministic automaton model allows—the second part of the theorem
allows for violations of the Nash or the bilateral switching requirement if, in response,
occasional profiles play a strategic role of deterrence. When players play the same non-
Nash profile in every period, or when one player only switches action in the Pareto
alternation, there always exists a player who wants to deviate from the convention. The
occasional profiles serve as a reminder of why he should not do so.
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Let us illustrate the importance of the latter in an example. Consider Buchanan’s
(1977) Samaritan’s Dilemma.
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Samaritan’s Dilemma

A player chooses to help (H) or not to help (H) another player accomplish a task, and
the other player chooses to work (W) or not to work (W). The dilemma is that the
samaritan’s help is crucial to both players’ welfare, but if she helps, then the other
player prefers not to work.

While it is straightforward to see that (H,W) is the unique NE, experimentally it is
observed that (H,W) and (H,W) appear remarkably often. In light of Theorem 1, it is
clear that a cyclic convention cannot give rise to such outcomes. The use of occasional
profiles sheds light on why we might observe such a play. The row player prefers
(H,W) but, the column player would prefer to play W if the row player chooses H. The
way the row player can induce the column player to choose W is by choosing not to
help (H) occasionally to serve as a reminder. Since not helping too often would harm
both players, it must be used only sparingly. Indeed, the second part of the theorem
shows that outcomes besides (H,W) are consistent with our axioms when we allow for
occasional profiles.

5.1.2 Maximal Conventions

A simple characterization of Axioms 1 and 3 may not be available in general, but one
is for maximal conventions. A convention s is maximal if there is no other convention
s′ such that π(s′) = π(s) and R(s′) ⊇ R(s), as defined in (2). That is, a convention
is maximal if no other convention generates the same payoffs with additional action
profiles. Clearly, maximal conventions must include all action profiles a, some with
probability zero and some not. Let Co denote the convex hull.

Proposition 1. The set of all maximal conventions that satisfy Axioms 1 and 3 is{
s : s is maximal, individually rational, and @π ∈ Co(Γ(s)) s.t. π � π(s)

}
(4)
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Proof. For a maximal convention s, Ri(s) = Ai for all i, so that Axiom 1 is satisfied
if and only if s is individually rational. Now, it remains to prove that a convention (in
fact, a maximal one) satisfies Axiom 3 if and only if there is no π ∈ Co(Γ(s)) such that
π � π(s). This is shown in Lemma 2 in Section B.2 of the Appendix. �

This result is illustrated in Figure 2 in the Appendix.

5.2 Individual Rationality and Efficient Simplicity

In this section, we characterize solutions under individual rationality.

Axiom 4. s is such that no i gets πi(s) < ui(G).

Proposition 2. The set of payoffs generated by all cyclic conventions that satisfy Axioms
2 and 4 is {

π : ∃s s.t. π = (π1(s), π2(s)) and @u ∈ Γ(s) s.t. u � π
}
. (5)

In the Prisoners’ Dilemma (on p.22), any payoff in the white triangular area is elim-
inated, as it requires playing (C,C), but (C,C) is better for both players.

By all accounts, Axioms 2 and 4 are basic requirements, yet they are enough to dis-
sipate most equilibrium multiplicity in many games. In Stag Hunt, for example, the only
conventions that survive these two axioms are constant play of a static Nash equilibrium.
There even are games for which Axioms 2 and 4 imply uniqueness: Proposition 5 (on
p.23) identifies a class of common-interest games in which a unique convention satisfies
the axioms.

Proposition 3. The set of conventions that satisfy Axioms 3 and 4 only contains individ-
ually rational s that are almost constant or in which players spend almost all the time
switching between two Pareto unranked action profiles.

The proof is omitted because it is a consequence of Proposition 1. The compari-
son between Proposition 3 and the theorem points to the weaker strategic implications
that follow from weakening stability. For example, any constant individually rational
convention satisfies Axioms 3 and 4, whether or not it is a Nash equilibrium.

Both propositions are illustrated in Figure 3.
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6 Further Properties

6.1 Payoff Invariance

The strategic aspects of a game remain essentially the same if players’ utilities are sub-
jected to a positive linear transformation. So, it is desirable that a solution be unaffected
by such transformations (see p.70 in Harsanyi and Selten (1988)). A solution S (which
is the set of all conventions satisfying some axioms) is said to be payoff-invariant if for
any stage games G and G′, where the utility functions in G′ are positive linear trans-
formations of those in G—i.e., u′i = βiui + δi with βi > 0 and δi ∈ R—, we have
S(G) = S(G′). Since the liminf is linear in the space of conventions, and since the min
and the max operators are also linear, implying that the maxmin is too, a convention sur-
vives any one of our axioms in G, if and only if, it survives it in G′. Thus, the solution
satisfying any combination of our axioms will be payoff-invariant.

6.2 Existence

It is straightforward to see that if there exists a pure strategy Nash equilibrium in the
stage game, then playing it forever is a (cyclic) convention that satisfies Axioms 1 and
3. However, can we say something meaningful in games that may not have a pure Nash
equilibrium? Proposition 1 answers this question positively if (4) is nonempty, and the
next proposition proves that it is.

Proposition 4. For any finite two-person stage game, the set of conventions that satisfy
Axioms 1 and 3 is nonempty.

Proof. Let π∗ = (π∗1, π
∗
2) be a feasible payoff on the Pareto frontier and such that π∗i ≥

ui(G)∀i (the existence of such π∗ follows from the definition of ui(G)). Since π∗ lies on
the Pareto frontier, there exist two action profiles, a and b, and a convention s such that
R(s) = {a, b} and π(s) = π∗. Now consider an alternative convention, s′, that plays a and
b with the same frequencies as s, but also plays all the other profiles A\{a, b} infinitely
often but with frequency zero. Then s′ must survive Axiom 3, since there can be no
Pareto improvements on π(s), and it must also survive Axiom 1, since stability comes
down to individual rationality (Axiom 4) when Ri(s) = Ai for all i. �
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7 Discussion

7.1 An Equilibrium Approach

In repeated situations, we could interpret conventions as real-time interactions between
the players (learning perspective), or as dynamic norms that players attain through an
unspecified process after playing for some time (equilibrium perspective). In this paper,
we take an equilibrium perspective and interpret conventions as the long-run or stable
outcome of the relationship.

But the equilibrium perspective prompts questions. How do conventions emerge?
How does a player know in real time that the dynamic interaction will never satisfy
some principle (e.g., individual rationality) and, thus, know how to adjust her behavior,
unless she sees the entire future?

Standard equilibrium theory prompts similar questions. If a Nash equilibrium of a
repeated game represents players’ interaction in real time, then how does each player
know all the future consequences of her move today? Similarly, how do players know
their opponents’ repeated game strategies? And if Nash equilibria of repeated games
are not played in real time, then what process leads to them? Nachbar (2005) shows that
there is no obvious answer.

Conventions are the starting point of our analysis. We do not explain their emergence
or guarantee it, but if some conventions do emerge, our goal is to construct a solution
that captures those and only those.

7.2 Time Structure

Unlike non-cyclic conventions, cyclic conventions have a time structure that axioms can
exploit. Say that an axiom exploits the time structure of (cyclic) conventions when one
can find (cyclic) s and s′ such that s survives said axiom but s′ does not, while all a ∈ A
are played with the same frequencies in s as in s′.

Although the main axioms in this paper ignore the time structure, they are particu-
larly plausible in repeated (hence, temporal) environments. Take individual rationality.
Although it seems hard to dispute, two players can easily miscoordinate in Battle of the
Sexes if they play it once, but they would not make a habit of it if they played repeatedly.

Importantly, other axioms than those presented in this paper can be studied in our
framework, including some that insist on the time structure. Here is a simple axiom that
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exploits the time structure, only provided for the sake of example:

Axiom 5. (Preference for shorter cycles) s is such that there is no s′ for which π(s) =

π(s′), R(s) = R(s′) and `(s′) < `(s).

In the spirit of Axiom 3(1), it is reasonable to believe that players would not increase
the complexity of their conventions to obtain the exact same payoffs. This implies that
players may play s′ = (ababab...), for example, instead of s = (aaaabbbbaaaabbbb . . .).
Axiom 5, however, says nothing about the order of action profiles within the cycle.

7.3 Towards a Positive Theory of Repeated Games

Given an experimental data set, it is easy to draw basic conclusions about the perfor-
mance of our theory, due to the observable nature of its predictions. Here, we consider
the experimental data set of Mathevet and Romero (2012).

The data consist of 434 sequences of play generated by human subjects who played
8 different stage games for more than 100 periods on average. In each session, subjects
were paired with a new partner and played a repeated game with a new stage game. The
length of the interactions was chosen randomly (see Roth and Murnighan (1978)) with
termination probability .01, which corresponds to discount factor δ = .99.14

The games tested cover a wide range of 2×2 games, including symmetric, asymmet-
ric, coordination, anti-coordination, prisoners’ dilemma, threat-vulnerable, and common-
interest games.

Two striking features emerge from the data. First, players often adopt a cyclic con-
vention. About two thirds of all sequences exhibit a cyclic pattern, which we extracted
by different procedures (e.g., pattern extraction algorithms) to get robust conclusions.
Second, among the observed cyclic conventions, more than 90% are constant or such
that the players switch between two Pareto unranked action profiles (not necessarily
with 50-50 frequency).

Among the constant conventions, most are a static Nash equilibrium. Two important
exceptions are (i ) the Prisoners’ Dilemma, where mutual cooperation is very common;
and (ii ) Chicken, where players massively play (C,C). It is also interesting to see that

14The authors considered another treatment in which each repeated game started with 30 rounds with
certainty, after which δ = 0.9. Since the differences between the two data sets were minor, they merged
them.
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Figure 1: 2 × 2 Games Tested and Number of Observations

players in the Ultimatum game play the static Nash equilibrium (C,D) and not the (non-
equilibrium) profile (C,C), even though both give the same payoffs.

Pareto switching happens in Battle of the Sexes, Chicken (rarely), and the Samari-
tan’s Dilemma. In the data, players always switch between two Pareto unranked profiles,
and both players always switch actions across these profiles, except in (iii ) the Samari-
tan’s Dilemma, where the samaritan always helps and the other player works one time
out of two.

We do not believe that instances (i ), (ii ) and (iii ) necessarily contradict the theory.
Take the Samaritan’s Dilemma. Although many subjects end up helping the column
player all the time, while column players work one time out of two, this convention
usually appears in the data after many punishments by the samaritan. Compared to
the other observed convention, which is the static Nash equilibrium, there are many
more punishments in the periods that precede the alternations work/not-work (and this
difference is statistically significant). This observation is in line with Theorem 1. Our
conjecture is that samaritans establish a reputation that causes the other player to work,
but this reputation is a stock that disappears if not replenished. This points to the role of
the occasional profiles in our theory, but we have little to say empirically at this point.
In infinitely repeated games, events such as ‘punishing with vanishing frequency’ are
delicate to interpret in a finite horizon, as in the real world.
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8 Conclusion

We have presented a new approach to determine which social norms should result from
repeated play of a game. This approach gives perspective to situations traditionally
dominated by multiplicity.

When some axiomatic solution seems to be valid, we may want to explain it by
modeling players’ behavior and describe explicitly how they can come to satisfy it.
This paper does not address this issue, but it seems promising to first propose a set of
reasonable axioms, and only then build (learning or equilibrium) models that satisfy
them.
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Figure 2: Payoff Sets under Stability and Efficient Simplicity (Axioms 1 and 3. Left:
cyclic, Right: (maximal) general conventions).
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Figure 3: Payoff Sets under Individual Rationality and Efficient Simplicity (Left: Abreu
and Rubinstein (1988)’s equilibrium payoffs; middle: Axioms 3 and 4; right: Axioms 2
and 4)

B Proofs

B.1 Uniqueness Result

Let u(G) = (u1(G), u2(G)) be the maxmin payoff vector in stage game G (Section 3).
The next proposition defines a family of common interest games—games where ui(a∗) ≥
ui(a) for all a implies u j(a∗) ≥ u j(a) for all a—for which a unique convention survives
our two weakest axioms.
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Proposition 5. Suppose that game G has an action profile a∗ such that u(a∗) � u(a)
and u1(a) + u2(a) < u1(G) + u2(G) for all a , a∗. Then, the set of cyclic conventions that
satisfy Axioms 2 and 4 is {(a∗ . . .)}.

Proof. If players play any cyclic convention s involving a∗ and another profile, then
πi(s) < ui(a∗) for all i, because ui(a∗) > ui(a) for all i and hence Axiom 2 is violated.
If players play any cyclic convention s that does not involve a∗, then u1(G) + u2(G) >
π1(s)+π2(s), because u1(G)+u2(G) > u1(a)+u2(a) for all a , a∗. As a result, there must
be some player i for whom πi(s) < ui(G), which contradicts Axiom 4. In conclusion,
the only convention that survives both axioms is the constant play of profile a∗. �

B.2 Theorem 1

Define a convention s to be internally efficient if there is no π ∈ Co(Γ(s)) such that
π � π(s).

Lemma 2. A convention s satisfies Axiom 3 if and only if it is internally efficient.

Proof. First, suppose that s satisfies Axiom 3. For every π ∈ Co(Γ(s)), there is a sub-
sequence s′ of s such that π(s′) = π. By Axiom 3, there is no subsequence s′ such that
π(s′) � π(s). Thus, there is no π ∈ Co(Γ(s)) such that π � π(s). By definition of P(·),
this implies that π(s) ∈ P(Co(Γ(s))). Suppose now that s is internally efficient. Then
π(s) ∈ P(Co(Γ(s))). There cannot be a subsequence s′ of s such that π(s′) � π(s), for
otherwise there would be a convex combination (in particular, one using rational num-
bers as coefficients) of elements of Γ(s) that Pareto dominates π(s). Therefore, Axiom 3
holds. �

Proof of Theorem 1.

1. It follows from Lemma 2 that a convention s satisfies Axiom 3 if and only if it
is internally efficient, that is, π(s) ∈ P(Co(Γ(s))). Every point in P(Co(Γ(s))) lies on
the boundary of Co(Γ(s)). This means that π(s) lies on a line segment connecting two
pure payoff profiles. Therefore, either s is almost constant (if π(s) is an extremity of the
line segment), or players switch almost all the time between two Pareto unranked action
profiles (which are the extremities of the line segment on which π(s) lies. As a result,
the set of cyclic conventions that satisfy Axioms 1 and 3 only contains individually
rational conventions that are either (i) constant or (ii) in which players switch between
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two Pareto unranked action profiles, a1 = (a1
1, a

1
2) and a2 = (a2

1, a
2
2). In case (i), let

a be the unique profile played under convention s, R(s) = {a}. Since R1(s) = a1 and
R2(s) = a2, Axiom 1 immediately implies that a1 and a2 are mutual best-responses,
and hence a must be a Nash equilibrium of the stage game. In case (ii), suppose by
way of contradiction that a1

1 = a2
1 (the argument is similar for a1

2 = a2
2). Then there is

a2 ∈ {a1
2, a

2
2} for which u2(a1, a2) > π2(s) for all a1 ∈ R1(s) = {a1

1} (because in the games
we study, a = a′ whenever ui(a) = ui(a′) for some i). This violates Axiom 1.

2. The initial part follows from Lemma 2. Suppose now that convention s falls
into one of these two cases: some a∗ is played with frequency 1 but ui(a′i , a

∗
j) > ui(a∗)

for some a′i , or player j does not switch action across the two Pareto unranked profiles
a and b played almost all the time. In both cases, player j plays a unique action a∗j
with frequency 1 (in case (ii), denote a∗j = a j = b j). If this were the only action that
j plays, |R j(s)| = 1, then s would violate Axiom 1 for the above reasons. Since s
satisfies the axioms, for every action âi ∈ Ai, there must be some â j ∈ R j(s) such that
ui(â) ≤ πi(s). Because a∗j is played with frequency 1, no â j can be played with strictly
positive frequency. Thus, actions â j are played occasionally. �
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