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“. . . it is easier to discern each object of sense when in its simple form than when an
ingredient of a mixture; easier, for example, to discern wine when neat than when
blended, . . . or to discern the nêtê by itself alone.”

Aristotle

1. INTRODUCTION

Information is a gift that may not always be accepted and, hence, use-
ful. Speaking to a toddler about grammar may not improve his linguistic
abilities, just as an adult may learn less from a book, an email, or a con-
tract that contains too much detail. Simon (1971) foreshadows the po-
tential hazards of detailed communication: “What information consumes
is rather obvious: it consumes the attention of its recipients.” Failures
to recognize this fact can have counterproductive effects: consumers are
frequently confused by nutritional labels; patients can be overwhelmed
in parsing side effects of medications; and so on (see Ben-Shahar and
Schneider, 2014). As Simon (1996, p.144) puts it: “The real design prob-
lem is not to provide more information to people . . . but [to design] intel-
ligent information-filtering systems.”

This paper examines the merits of information filtering for attention
purposes. When is it useful? After all, people could themselves filter in-
formation they deem superfluous. In the standard paradigm of rational
inattention (Sims, 1998, 2003; Caplin and Dean, 2015; etc.), discarded
information is ignored at no cost: the agent pays only for the informative
content of what he chooses to heed. Information being free-disposal, one
may suspect that disclosing more of it can never hinder decision making.
But there is a risk—not that some provided information will be superflu-
ous, but rather that it will be “inferior” and crowd out other, more useful,
information.

Absent attention concerns, if a principal (she) and an agent (he) dis-
agree on the best state-contingent choice, information filtering can be
used for instrumental reasons: restricting the agent to partial informa-
tion can persuade him to choose an action the principal prefers (e.g.,
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Kamenica and Gentzkow, 2011). To isolate optimal filtering for atten-
tion purposes, we separate it from its persuasive purpose by assuming
that the principal and the agent have the same material motives—hence,
agree on the best action in all states.

In our model, a principal provides information to a rationally inatten-
tive agent about some underlying state of the world. The agent cares
about his material benefit, but also about the cost of processing informa-
tion. The cost could be direct, because processing information is men-
tally taxing, or an opportunity cost, because people and organizations
have limited information processing capacity (Sims, 1998, 2003). The
principal, however, is motivated only by the agent’s material benefit, as
a teacher is motivated by her student’s educational outcomes or a doc-
tor by the fitness of her patient’s medical decisions. In this paternal-
istic, benevolent design problem, the principal does not internalize the
agent’s attention cost. Given such costs, the agent decides how informed
he wants to be, taking whatever information the principal provides as an
upper bound. Choosing that upper bound optimally is our design prob-
lem.

As hinted above, attention management is about replacing “inferior”
information with “better” information, while ensuring the latter’s use.
To make this more precise, let qF be the information the agent would
acquire given full disclosure. The principal never has a reason to provide
more or less information than qF , as more would be ignored, by revealed
preference, and less would harm the principal. Therefore, any scope for
improvement upon full disclosure must come from providing incompara-
ble information, neither more nor less than qF .

Our main result shows that attention management is fundamentally
about trading off issues. Formally, we prove that full disclosure is univer-
sally optimal (i.e., for all action sets, material objectives, and attention
costs) if and only if the state is binary. The intuition for the positive
result is that, with only two states, information can never be misused,
because its sole use is to separate one state from the other. No piece of
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information being “inferior”, full information is optimal for the principal,
even though the agent will typically discard some of it. By contrast, with
three states or more (call them -1, 0 and 1), information can be used in
multiple ways, such as separating 1 from -1, 0 from {−1,1}, etc. Call each
of these an “issue.” Left to his own devices, the agent may focus on the
wrong issues.

Conversely, we show how information filtering dominates full disclo-
sure in a canonical example with three states, Shannon attention cost,
and a motive for matching the state. With all information available,
the agent learns to discern the moderate state relatively well from the
extreme states, but he does not learn to discern the latter from each
other, an issue he does not deem worth a high attention cost. Informa-
tion about the moderate state crowds out information about the extreme
states, even though the latter could forestall harmful mistakes. This
phenomenon is supported by strong evidence, despite its stylized incar-
nation herein. Ben-Shahar and Schneider (2014) present many decision
scenarios, including medical choices, retirement planning, and loan con-
tracting, in which mandated disclosures are counterproductive. A key
channel is a crowding-out phenomenon: “Because disclosers can proffer,
and disclosees can receive, only so much information, mandated disclo-
sures effectively keep disclosees from acquiring other information.” By
excluding cheaper information from consideration, filtering can encour-
age the agent to pay more attention to issues he might otherwise neglect.

Related Literature. Our paper bridges two literatures: persuasion
through flexible information (Kamenica and Gentzkow, 2011; Aumann
and Maschler, 1995) and rational inattention (Sims, 1998, 2003).

Among other generalizations, the Bayesian persuasion framework has
been extended to include costly information provision by the principal
(Gentzkow and Kamenica, 2014) and costly parallel information acquisi-
tion by the agent (Matyskova, 2018). Other works study persuasion with
departures from “classical” preferences, including psychological prefer-
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ences (Lipnowski and Mathevet, 2018), ambiguity aversion (Beauchene,
Li, and Li, 2017), and heterogenous beliefs (Alonso and Câmara, 2016;
Galperti, 2017). In the above papers, the receiver is a passive learner,
automatically processing whatever information is revealed by the sender.
In our paper, the receiver actively filters his own information to limit in-
formation processing costs.

The rational inattention literature (Sims, 1998, 2003; Caplin and Dean,
2015; Caplin and Martin, 2015; Matějka and McKay, 2015; etc.) studies
optimal decision making by agents who face an attention cost (or atten-
tion constraint) and decide which of the available information to process
before acting. These models are the building blocks of our agent’s prob-
lem, given the principal’s disclosure choice.

Our paper contributes to the literature on costly information acquisi-
tion under moral hazard (e.g., Dewatripont and Tirole, 1999; Li, 2001).
In particular, in a setting of delegated decision-making, Szalay (2005) il-
lustrates that eliminating “safe” actions from the agent’s choice set can
sharpen incentives to seek information, which may be worthwhile even
if the principal never benefits from restricting the agent’s behavior ex-
post. In our model, limiting the information available to the agent en-
dogenously eliminates such safe behavior (see Section 3.2).

Other papers featuring information transmission under some form of
inattention are those of Bloedel and Segal (2018), Lester, Persico, and
Visschers (2012), and Wei (2018). In contemporaneous work, Bloedel
and Segal (2018) also study a setting in which a principal chooses which
information to give an agent, who flexibly decides how to allocate atten-
tion in advance of a decision. In addition to important modeling differ-
ences,1 their work has a different purpose. We ask when information
filtering can aid decision making, insisting on the role of multiple issues.
In contrast, Bloedel and Segal (2018) apply the toolbox of Dworczak and

1. Beyond their focus on binary actions and entropic attention costs, and the possibility of misaligned
material motives, Bloedel and Segal (2018) use a qualitatively different cost specification from ours. In
our model, the agent’s attention cost concerns the degree to which he reduces his uncertainty about
the state. Their agent, instead, bears a cost to reduce uncertainty about the realized message from the
principal’s chosen experiment.
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Martini (2018) to explicitly solve for an optimally persuasive principal’s
policy in a canonical entropic-cost, binary-action model. Lester, Persico,
and Visschers (2012) analyze a model of evidence exclusion in courts of
law. Our paper studies the same tradeoff in a flexible information-choice
framework. Finally, Wei (2018) extends our framework to misaligned
preferences, studying a buyer-seller relationship.

2. THE ATTENTION MANAGEMENT PROBLEM

2.1 Our Model

Let Θ and A be compact metrizable spaces with at least two elements.
An agent must make a decision a ∈ A in a world with uncertain state
θ ∈Θ distributed according to prior µ ∈ ∆Θ. When he chooses a in state
θ, his material payoff is u(a,θ), where u : A×Θ→ R is continuous. The
principal’s payoff is equal to the agent’s material utility.2

In addition to his material utility, the agent incurs an attention cost,
the utility loss from processing information. To define it, first let

R
(
µ
)

:=
{

p ∈∆∆Θ :
∫
∆Θ
ν dp(ν)=µ

}
be the set of (information) policies, which are the distributions over
agent beliefs that average to the prior. It is well-known (e.g., Kamenica
and Gentzkow, 2011) that signal structures and information policies are
equivalent formalisms. Our agent’s attention cost function is a mapping
C :∆∆Θ→R+ given by3

C(q)=
∫
∆Θ

c dq (1)

for some convex continuous c :∆Θ→R+. Jensen’s inequality tells us that
an agent who processes more information, in the sense of obtaining a
policy q′ that is more (Blackwell) informative than q, denoted q′ ºB q,4

2. For reasons outside the model, the agent must make the decision and cannot cede responsibility to
the principal.

3. Caplin, Dean, and Leahy (2018) call such a cost functional “posterior-separable”.
4. For any q, q′ ∈ R(µ), q′ ºB q if q′ is a mean-preserving spread of q, that is, there is r : ∆Θ→ ∆∆Θ
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incurs a higher attention cost for q′ than for q.

The timing of the game is as follows:

– The principal first chooses an information policy p ∈R(µ).

– The agent then decides to what extent he should pay attention to
p: he chooses a policy q ∈ R(µ) such that q ¹B p. Such a policy q is
called an (attention) outcome.

– Nature draws an agent belief ν ∈∆Θ via q.

– The agent chooses an action a ∈ A.

– Nature chooses a state θ ∈Θ via ν.

We study principal-preferred subgame perfect equilibrium of this game.
It is convenient to work with the principal’s indirect utility at ν ∈∆Θ

UP(ν)=U(ν) :=max
a∈A

∫
Θ

u(a, ·) dν,

and the agent’s indirect utility

UA(ν)=U(ν)− c(ν).

Note that the attention cost does not affect the agent’s optimal choice of
a conditional on a given belief. The principal’s problem can therefore be
formalized as follows:

sup
p,q

∫
∆Θ

UP dq

s.t. p ∈R
(
µ
)

and q ∈G∗(p),
(2)

where

G∗(p) := argmax
q∈R(µ): q¹B p

{∫
∆Θ

U dq−C(q)
}
= argmax

q∈R(µ): q¹B p

∫
∆Θ

UA dq

such that (i) q′(S)= ∫
∆Θ r(S|·) dq,∀ Borel S ⊆∆Θ and (ii) r(·|ν) ∈R(ν),∀ν ∈∆Θ.
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is the agent’s optimal garbling correspondence. An information policy
p∗ ∈ R(µ) is (principal-) optimal if (p∗, q∗) solves (2) for some q∗. The
corresponding q∗ is an optimal (attention) outcome.

Notice that the policy p chosen by the principal appears only in the
constraint and does not directly affect payoffs. In deciding which infor-
mation to make available, the principal proposes a menu of information
policies, from which the agent chooses.

2.2 Existence

As a preliminary result, we prove that a solution to the principal’s
problem exists. Say that information policy p ∈R(µ) is incentive com-
patible (IC) if the agent finds it optimal to pay full attention to it, i.e., if
p ∈G∗(p).

LEMMA 1. There exists a solution q∗ to

sup
q∈R(µ)

∫
∆Θ

UP dq

s.t. q is IC.
(3)

Moreover, q∗ solves (3) if and only if (p∗, q∗) is a solution to (2) for
some p∗.

Existence follows from a compactness argument, after establishing
that the garbling correspondence is continuous. That IC policies are
without loss, analogous to the revelation principle, relies on revealed
preference reasoning: if q is an optimal attention outcome, then it must
be an optimal garbling of itself, q ∈G∗(q).

3. FILTERING AND THE NUMBER OF ISSUES

The only preference divergence in our model is that the principal does
not internalize the agent’s cost of attention. Thus, a sensible intuition
is that the agent will either (i) use information the principal provides,
in which case the principal benefits from providing it, or (ii) ignore the
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principal, in which case the principal bears no cost from providing it. In
one-issue environments, where there are only two possible states, this
intuition turns out to be exactly correct.

With three or more states, however, the principal can withhold some
aspects of the state and, in doing so, give the agent a higher marginal
value for the information that is made available. In this fashion, in-
formation filtering can induce the agent to pay “better attention” and
improve his decision-making.

Let the full disclosure policy, pF ∈ R(µ), be that with pF({δθ}θ∈Θ) = 1,
where δθ ∈∆Θ assigns probability 1 to state θ.

THEOREM 1. Given Θ, the following are equivalent:

1. Full disclosure is optimal for every 〈A,u, c,µ〉.
2. The state is binary.

We illustrate below the two directions of the theorem. First, we present
an intuitive argument for why full disclosure is optimal with two states.
Second, we demonstrate that full disclosure can be suboptimal with three
states or more by counterexample. See the Appendix for the formal ar-
guments.

3.1 Full Disclosure in Binary-State Environments

The principal never has a reason to provide more or less information
than what the agent would acquire given full information (denoted qF).
More information would be ignored, and less would harm the principal.
The only way to have the agent bear a greater cost of attention and make
a better decision is to provide a policy that is incomparable to qF (the
attention outcome from full information).

When the state is binary, for intuition, consider the case in which
there is a unique optimal attention outcome and a unique agent best
response to full information, each with binary support. The Blackwell
ranking of policies with binary support enjoys a simple characterization
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FIGURE I: OPTIMALITY OF FULL INFORMATION WHEN |Θ| = 2

(see Lemma 2): for any p, q ∈R(µ) with supp(p) = {νp
1 ,νp

2 } and supp(q) =
{νq

1 ,νq
2},

p ºB q ⇐⇒ supp(q)⊆ co[supp(p)] ⇐⇒ ν
p
1 ≤ νq

1 ≤µ≤ νq
2 ≤ νp

2 . (4)

It turns out that any such policy that is incomparable to qF is not IC.
To see this, let qF be represented by the red line in Figure I. When full
information is disclosed, qF can be found by the standard concavification
technique. Now, suppose that the principal offered some other policy,
say q̃ (in blue) in Figure I, which is incomparable to qF by condition (4).
Then, the agent would not pay full attention to q̃, because q̃∗ (in purple)
is a garbling of q̃ by (4), and it clearly gives the agent a strictly higher
payoff than q̃ (since ũ∗

A > ũA).
The above argument suggests that the principal can only induce the

agent to pay attention to qF or to less informative policies than qF . Given
their preference alignment, the principal finds it optimal to induce qF by
providing full information.
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3.2 Information Filtering in Multi-State Environments

Consider now a canonical ternary-state specialization of our model,
readily extended to more states, such that full disclosure is suboptimal.

There are three states and a symmetric prior; each state has one as-
sociated action tailored to match it; and attention costs are proportional
to the reduction in Shannon entropy. Formally, let the state and ac-
tion spaces be Θ = A = {−1,0,1}; the prior be µ =

(
1−µ0

2 ,µ0, 1−µ0
2

)
for some

µ0 ∈ (0,1); the material utility be u(θ,a)=−(a−θ)2; and the attention cost
be

c(ν)= κ[
H(µ)−H(ν)

]
where H(ν)=−∑

θ

ν(θ) log[ν(θ)]

and κ> 0.
Rather than solving for the optimal policy in this model (which is not

needed to establish the theorem), we show that a particular form of infor-
mation filtering generates a strictly higher payoff to the principal than
does full disclosure, for a range of parameters.

To this end, consider temporarily a simpler delegation problem: what
would happen if the principal could, instead of restricting information,
restrict the agent to a nonempty set of actions, B ⊆ A, and the agent
would optimally allocate his attention to choose from B? We prove a
useful claim for this auxiliary problem: for some parameter values (µ0,κ)

(†) The principal would benefit from restricting the agent to actions
{−1,1} (compared to unrestricted choice).

(‡) The agent would rather be restricted to actions {−1,1} than be re-
stricted to {0}.

While the direct calculations are more delicate under entropic cost,
the intuition for (†) is Szalay’s (2005) familiar insight. As he shows, there
is a benefit to forcing an agent to choose from extreme options when in-
formation acquisition is subject to moral hazard. By removing safe ac-
tions from an agent’s choice set (here, action 0), the principal makes the
marginal value of information higher to the agent, because mistakes be-
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come more harmful, for example choosing -1 in state 1. This strength-
ening of incentives for information acquisition can outweigh the ex-post
payoff losses from not being able to perfectly adapt to the state.

What (‡) enables is a bridge between Szalay’s (2005) intuition and the
attention management framework. Specifically, we exhibit an informa-
tion policy pO such that, if (‡) holds, then the agent’s optimal behavior
in the original problem, given pO but unrestricted choice, is identical to
what he would do given choice restriction {−1,1} and unrestricted infor-
mation. So, by restricting information, the principal endogenously re-
stricts the agent’s choice set by (‡), which serves the principal’s objective
by (†).

What information filtering strategy might the principal want to adopt?
Quite simply, suppose that she reveals only the sign of the state, with
uniform mixing if θ = 0. This strategy restricts the agent’s attention
to a particular issue: he can learn nothing about whether the state is
0, but he can otherwise expend attention flexibly to rule out either ex-
treme state. This strategy corresponds to policy pO ∈ R(µ) such that
supp(pO)= {(1−µ0,µ0,0), (0,µ0,1−µ0)}. See Figure II for a representation
in the belief simplex.

pF

pO

µ

−1 1

0

FIGURE II: pF AND pO

Observe how, given (‡), the agent’s behavior under restricted infor-
mation pO coincides exactly with his behavior under restricted actions
{−1,1}. Indeed, as pO has binary support S, Lemma 2 implies the agent’s
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optimal value given pO is simply the concave envelope of:

co(S) → R

ν 7→ max
{∫

Θ
u(−1, ·) dν,

∫
Θ

u(0, ·) dν,
∫
Θ

u(1, ·) dν
}
− c(ν),

(5)

the restriction of UA to co(S) (the green line segment in Figure II). But
(5) is an even (i.e., symmetric) function, which is the maximum of three
strictly concave functions—one for each action. Thus, its concave enve-
lope about µ (a symmetric prior) is either (i) the value of the peak of the
middle function, which would be exactly the agent’s value if only action
{0} were available; or (ii) the value of the peaks of the other two func-
tions, which would be exactly the agent’s value if only actions {−1,1} were
available.5 Therefore, if the agent strictly prefers restriction {−1,1} to re-
striction {0}, his behavior under pO perfectly coincides with that under
restriction {−1,1}.

Beyond conceptually tying attention management to delegated choice,
the above reduction is mathematically convenient. Indeed, the agent’s
problem given full information (with any restricted set of actions) is a
standard discrete choice problem with rational inattention, for which his
optimal behavior can be explicitly derived from the method in Caplin and
Dean (2013). We can therefore verify all the required payoff comparisons
by direct computation.

When the marginal attention cost κ is not too high, the situation is
described by Figure III. As foreshadowed, the induced attention out-
comes qO and qF capture different “issues,” i.e., dimensions of uncer-
tainty. Specifically, they are Blackwell-incomparable (see Lemma 2).6

When choosing qF , the agent pays greater attention to state 0 than un-
der qO, but he learns less about the extreme states. At a high level, the
agent lets the “minor issues” (represented by state 0) steal his attention

5. Notice that the indirect utility UA is symmetric about the line {ν ∈ ∆Θ : ν(−1) = ν(1)}, and so the
(unique) agent best response to restricted action set {−1,1} is symmetric with binary support, and is
therefore supported on co(S).

6. In contrast to the binary-state world, this environment exhibits information policies (for example,
qO) which are both IC and incomparable to qF .
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qF

qO

µ

−1 1

0

FIGURE III: qF AND qO

when unsupervised, whereas the restriction pO (inducing qO) redirects
his attention toward the “big issues” — those with greater marginal ma-
terial reward (represented by states -1 and 1).

4. CONCLUSION

We study the design problem of a well-intentioned principal who pa-
ternalistically seeks to help a rationally inattentive agent make informed
decisions. Even though the principal unequivocally wants the agent to
be better informed, we find that withholding information can be optimal,
helping guide the agent to make better decisions. A key takeaway from
our analysis is that attention management is fundamentally about choos-
ing the right “issues” on which the agent should focus. We convey this
point by showing that single-issue information should never be withheld
and by demonstrating the possibility of fruitful information withholding
in a canonical multi-issue example.

A. APPENDIX: PROOFS

A.1 Theorem 1: Two States

We first record a geometric characterization of the Blackwell order
under affine independence. The proof, nearly identical to Wu (2018, The-
orem 5), is omitted.
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LEMMA 2. Suppose |Θ| < ∞. ∀p, q ∈ R(µ) such that supp(p) is affinely
independent,

p ºB q ⇐⇒ supp(q)⊆ co[supp(p)] .

We next show that binary-support policies are without loss in the prin-
cipal’s problem.

CLAIM 1. If |Θ| = 2, then some optimal IC policy q∗ ∈ R(µ) exists with
|supp(q∗)| ≤ 2.

Proof. Lemma 1 delivers an optimal IC policy q ∈ R(µ). Identifying ∆Θ
with [0,1], for each λ ∈ [0,1], let νλ := (1−λ)min[supp(q)]+λmax[supp(q)].
If ν0 = ν1, then q∗ = q works, so we focus on the case that ν0 < ν1. That
q ∈R(µ) tells us ν0 <µ< ν1, so that there is a unique q∗ ∈R(µ)∩∆{ν0,ν1}.
Clearly, q∗ ºB q by Lemma 2.

Fix any λ ∈ (0,1). For each ε ∈ (0, ν1−ν0
2 ), that ν0,ν1 ∈ supp(q) implies

that there exist mε
0 ∈∆[ν0,ν0 + ε], mε

1 ∈∆[ν1 − ε,ν1], and γε > 0 such that
γε[(1−λ)mε

0+λmε
1]≤ q. That q is IC then implies∫

UA d[(1−λ)mε
0+λmε

1]≥UA

(∫
ν d[(1−λ)mε

0+λmε
1](ν)

)
,

for otherwise the agent could profitably pool the mass from γε[(1−λ)mε
0+

λmε
1]. But then, taking limits as ε→ 0 and appealing to continuity of UA

tells us (1−λ)UA(ν0)+λUA(ν1)≥UA(νλ).
Consider any q̂ ∈ R(µ) such that q̂ ¹B q∗—which Lemma 2 tells us

is equivalent to q̂{νλ : 0 ≤ λ ≤ 1} = 1. That (1−λ)UA(ν0)+λUA(ν1) ≥
UA(νλ) for any λ ∈ [0,1] immediately implies

∫
UA dq∗ ≥ ∫

UA dq̂. As q̂
was arbitrary, it follows that q∗ is IC. But q∗ ºB q, so that

∫
UP dq∗ ≥∫

UP dq, meaning q∗ too is an optimal IC policy.
Now, we establish one direction of Theorem 1.

CLAIM 2. If |Θ| = 2, then full disclosure is optimal for every 〈A,u, c,µ〉.
Proof. Fix any 〈A,u, c,µ〉. Claim 1 delivers an optimal IC policy q∗ ∈

R(µ) supported on at most two beliefs. If we could find some qF ∈G∗(pF)
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with qF ºB q∗, then we could prove the claim. Indeed, convexity of UP

would imply that
∫
∆ΘUP dqF ≥ ∫

∆ΘUP dq∗; and optimality of (pF , qF)
would then follow from optimality of (q∗, q∗).

If |supp(q∗)| = 1, then any qF ∈G∗(pF) has qF ºB q∗. Now, focus on the
case of |supp(q∗)| = 2. Identifying ∆Θ with [0,1], say supp(q∗) = {ν0,ν1},
where 0≤ ν0 <µ< ν1 ≤ 1.

For any λ ∈ (0,1), there is some ε ∈ (0,1) with ε(1−λ, λ)≤ (q∗(ν0), q∗(ν1)).
Therefore, pλ := q∗− ε[(1−λ)δν0 +λδν1

]+ εδ(1−λ)ν0+λν1 ∈R(µ) too. As q∗ ∈
G∗(q∗) and pλ ¹B q∗, we learn

0≤
∫
∆Θ

UA dq∗−
∫
∆Θ

UA dpλ = ε [(1−λ)UA(ν0)+λUA(ν1)−UA ((1−λ)ν0+λν1)] .

So, defining

r :∆Θ → ∆∆Θ

ν 7→
(1−λ)δν0 +λδν1 : ν= (1−λ)ν0+λν1 for some λ ∈ (0,1),

δν : otherwise,

r is a mean-preserving spread with
∫
∆ΘUA dr(·|ν)≥UA(ν) ∀ν ∈∆Θ.

Now, take any q̃ ∈G∗(pF), and define qF := ∫
∆Θ r dq̃ ∈R(µ). As∫

∆Θ
UA dqF −

∫
∆Θ

UA dq̃ =
∫
∆Θ

[∫
∆Θ

UA dr(·|ν)−UA(ν)
]

dq̃(ν)≥ 0

and q̃ ∈ G∗(pF), it follows that qF ∈ G∗(pF) too. Moreover, by construc-
tion, qF ([0,ν0]∪ [ν1,1])= 1, so that qF ºB q∗. The claim follows.

A.2 Theorem 1: Three States

Consider the model from Section 3.2, parametrized by (κ,µ0). Let x :=
e−1/κ ∈ (0,1).

For any `, r ∈ [0,1] such that `+ r ≤ 1, identify (`, r) with the belief
ν`,r := `δ−1+ (1−`− r)δ0+ rδ1 ∈∆Θ. The map (`, r) 7→ ν`,r is bijective and
affine.

We consider the agent’s optimal behavior given various restricted ac-
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tion sets: B1 := {0}, B2 := {−1,1}, and B3 := {−1,0,1}= A.

ASSUMPTION 1. xµ̄0 <µ0 < µ̄0, where µ̄0 := 1−x−x2−x3

(1−x)(1+x)2 .

NOTATION 1. Let:7

q1 = δµ = δ(1−µ0
2 , 1−µ0

2

)
q2 = 1

2
δ(

x4(1−µ0)
1+x4 , 1−µ0

1+x4

)+ 1
2
δ(

1−µ0
1+x4 , x4(1−µ0)

1+x4

)

q3 = αδ(
x(1−x)

(1−x2)2
, x(1−x)
(1−x2)2

)+ (1−α)
(
1
2
δ(

1−x
(1−x2)2

, x4(1−x)
(1−x2)2

)+ 1
2
δ(

x4(1−x)
(1−x2)2

, 1−x
(1−x2)2

)) ,

where α :=
(1−x2)2

1−2x+x4µ0−x

1−x .

CLAIM 3. For each k ∈ {1,2,3}, qk is the unique solution to

max
q∈R(µ)

∫
∆Θ

max
a∈Bk

{−Eθ∼ν [
(a−θ)2]−κ[

H(µ)−H(ν)
]}

dq(ν)

if Assumption 1 holds.

Proof. Optimality of qk and uniqueness, respectively, follow directly
from Caplin and Dean (2013, Theorems 1 and 2).8

CLAIM 4. There are values (µ0,κ) ∈ (0,1)× (0,∞) satisfying Assumption
1 with:

1.
∫
ΘUP dq2 >

∫
ΘUP dq3;

2.
∫
ΘUA dq1 <

∫
ΘUA dq2.

Proof. Define the polynomial M(x) ≡ 1−3x−4x3 + x4 + x5, and recall
that µ̄0(x)= 1−x−x2−x3

(1−x)(1+x)2 . Direct computation shows that d[xµ̄0(x)]
dx = M(x)

(1−x)2(1+x)3 ,
where the denominator is always strictly positive over (0,1). That M(0)>
0 > M(1) then implies that x 7→ xµ̄0(x) is strictly increasing [resp. de-
creasing] in a neighborhood to the right [left] of 0 [1]. Maximizing the

7. One easily verifies that R(µ) contains q1, q2, and (under Assumption 1) q3.
8. Also see Csiszár (1974).
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continuous function over a large enough compact subinterval of (0,1),
there is some x∗ ∈ argmaxx∈(0,1) xµ̄0(x).

A rational, non-affine function that attains an interior maximum will
have zero derivative at the maximizer and be strictly concave in a neigh-
borhood of the maximizer. Therefore, M(x) < M(x∗) = 0 for sufficiently
small x > x∗.

Since µ̄0(x) → 1 as x → 0, it follows that xµ̄0(x) > 0 when x is suf-
ficiently small; the maximum value x∗µ̄0(x∗) is therefore strictly posi-
tive. As a consequence, 0 < xµ̄0(x) < µ̄0(x) for x near enough to x∗. More-
over, expanding the denominator defining µ̄0 shows that µ̄0 < 1 for any
x ∈ (0,1).

So fix x ∈ (x∗,1) small enough to ensure that M(x) < 0 and µ̄0(x) > 0—
which the above work shows exists—and take κ := −1

log x . Then for any µ0

in the nonempty interval (xµ̄0, µ̄0)⊆ (0,1), Assumption 1 will be satisfied.
It remains to show that such µ0 can be taken to satisfy the two desired
payoff rankings.

For any µ0 ∈ (xµ̄0, µ̄0), the direct computation shows:

∫
Θ

UP dq2−
∫
Θ

UP dq3 =
M(x)

(
x− µ0

µ̄0

)
(1− x2)(1+ x4)

> 0.

Thus, the principal payoff ranking 1. is as required.
Finally, we show that the desired agent payoff ranking 2. can be

ensured. When µ0 = xµ̄0 exactly, an appeal to Caplin and Dean (2013,
Theorems 1 and 2) shows that q2 is the agent’s unique best response to
full information; in particular,

∫
ΘUA dq1 <

∫
ΘUA dq2 at such parameter

values. By continuity, the same ranking will hold for sufficiently small
µ0 ∈ (xµ̄0, µ̄0).

CLAIM 5. If
∫
ΘUA dq1 <

∫
ΘUA dq2 and Assumption 1 holds, then G∗(pF)=

{q3} and G∗(pO)= {q2}.

Proof. That G∗(pF)= {q3} follows from Claim 3. We now characterize the
agent’s best responses to pO. Let ū := ∫

ΘUA dq2, S := co[supp(pO)], and
define f : S× A →R by f (ν,a) := ∫

Θu(a, ·) dν− c(ν).
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By Lemma 2, we know q2 ¹B pO, so that any element of G∗(p) must
generate a value of at least ū to the agent.

Let {ν1,ν−1} = supp(q2) where ν1(1) > ν−1(1). Consider any ν ∈ S. As
f (·,1) is strictly concave and has zero derivative (in S) at ν1, it follows
that f (ν,1)≤ ū—strictly so if ν ∉ supp(q2). Similarly, f (ν,−1)≤ ū, strictly
so if ν ∉ supp(q2). Finally, as f (·,0) is concave and has zero derivative at
µ, and f (µ,0)= ∫

ΘUA dq1 < ū, we learn that f (ν,0)< ū. Maximizing over
a ∈ A tells us UA(ν)≤ ū, strictly so if ν ∉ supp(q2).

Take any q ∈ G(pO) \∆[supp(q2)]. Lemma 2 implies q(S) = 1, so that
UA|supp(q) ≤ ū, but UA is not q-a.s. equal to ū. Therefore

∫
UA dq < ū =∫

UA dq2, so that q cannot be a best response for the agent.
We thus know that G∗(pO)⊆R(µ)∩∆[supp(q2)]. Unique optimality of

q2 follows because R(µ)∩∆[supp(q2)]= {q2}.

CLAIM 6. Some (µ0,κ) ∈ (0,1)× (0,∞) are such that:

1. There is a unique qF ∈G∗(pF) and a unique qO ∈G∗(pO).

2.
∫
ΘUP dqF < ∫

ΘUP dqO.

Proof. Take values for µ0 and κ as delivered by Claim 4. Then, Claims
4(2) and 5 imply that qF = q3 and qO = q2 are unique agent best re-
sponses to pF and pO, respectively. Claim 4(1) delivers the desired payoff
comparison for the principal.

A.3 Proof of The Main Theorem

Proof. That 2 implies 1 is Claim 2.
To see that 1 implies 2, suppose |Θ| > 2. Then, relabeling states,

assume without loss that Θ ⊇ Θ3 := {−1,0,1}. Let A := {−1,0,1}. Let
u : A ×Θ→ R be continuous with u(a,θ) = −(a−θ)2 for every a ∈ A and
θ ∈Θ3; it exists by the Tietze extension theorem. Define the cost function
c :∆Θ→R by

c(ν)= κ ∑
θ∈{−1,0,1}: ν(θ)>0

[
ν(θ) logν(θ)−µ(θ) logµ(θ)

]
19

 Electronic copy available at: https://ssrn.com/abstract=3161782 



for some κ> 0; it is convex and continuous. Finally, let µ ∈∆Θ be the prior
with µ(Θ\Θ3) = 0, µ(0) = µ0, and µ(−1) = µ(1) = 1−µ0

2 for some µ0 ∈ (0,1).
Taking (µ0,κ) as delivered by Claim 6 completes the proof.
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A. FOR ONLINE PUBLICATION: EXISTENCE PROOF

In this supplementary appendix, we provide a formal proof of Lemma
1. In fact, we prove the slightly stronger result, that an optimum exists
to the program of Lemma 1 that, if |Θ| is finite, has affinely independent
support. This strengthening of the lemma is not invoked in our paper,9

but may be of use to future users of the Attention Management frame-
work.10

A.1 Toward the proof of Lemma 1

We first introduce some additional notation. Given compact metriz-
able spaces X and Y , a map f : X → ∆Y , x ∈ X , and Borel B ⊆ Y , let
f (B|x) := ( f (x)) (B). Define the barycentre map βX :∆∆X →∆X by βX (X̂ |m) :=∫
∆X γ(X̂ )dm(γ), ∀m ∈∆∆X , Borel X̂ ⊆ X . In other words, βX (m)= Eν∼m(ν)

for all m ∈∆∆X . Note that R(µ)=β−1
Θ (µ), by definition.

Define Φ :∆∆∆Θ→ (∆∆Θ)2 by Φ (P) = (
β∆Θ(P),P◦β−1

Θ

)
. While we offer

no specific interpretation to this map, it will be of use in deriving required
properties of the Blackwell order.

Define the garbling correspondence G :∆∆Θ⇒∆∆Θ by

G(p) := {
q ∈∆∆Θ : p ºB q

}
.

We can view the principal’s problem as a delegation problem in which she
offers the agent a delegation set Ĝ ∈ {G(p)}p∈R(µ), and the agent makes
a selection q ∈ Ĝ. Recall, the agent’s optimal garbling correspondence
G∗ :∆∆Θ⇒∆∆Θ is given by

G∗(p) := argmax
q∈G(p)

∫
∆Θ

UA dq.

CLAIM 7. βΘ, β∆Θ are continuous.

9. The strengthened result implies Claim 1, but we instead provide an independent, elementary proof
in the main appendix.

10. Given results proven in this online appendix, one could employ results of Harris (1985) to establish
existence. We instead prove the result directly, enabling us to strengthen the lemma.
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Proof. This follows from Phelps (2001, Proposition 1.1).

CLAIM 8. Φ is continuous.

Proof. Suppose {Pn}n ⊆ ∆∆∆Θ converges to P. Since ∆Θ is compact
metrizable, β∆Θ(Pn) → β∆Θ(P), by Claim 7. To show Pn ◦β−1

Θ → P ◦β−1
Θ ,

take any continuous and bounded function f : ∆→ R. Continuity of βΘ
implies that f ◦βΘ is continuous. Then,∫

∆Θ
f d

(
Pn ◦β−1

Θ

)= ∫
∆∆Θ

f ◦βΘ dPn

→
∫
∆∆Θ

f ◦βΘ dP

=
∫
∆Θ

f d
(
P◦β−1

Θ

)
where the second line follows from the weak convergence of Pn to P.

CLAIM 9. The partial order ºB is given by ºB=Φ(∆∆∆Θ).

Proof. First, take any p ºB q witnessed by mean-preserving spread r :
∆Θ→ ∆∆Θ as in footnote 4. Define P := q ◦ r−1 ∈ ∆∆∆Θ. We now show
that Φ(P) = (p, q). Notice that R(ν)∩R(ν′) =; for ν 6= ν′. Therefore, any
ν ∈∆Θ satisfies β−1

Θ (ν)∩ r(∆Θ)= r(ν). As a result, for any Borel S ⊆∆Θ,

P◦β−1
Θ (S)= q ◦ r−1 (

β−1
Θ (S)

)= q ◦ r−1(r(S))= q(S),

and

β∆Θ(S|P)=
∫
∆∆Θ

p̃(S) dP(p̃)=
∫
∆∆Θ

p̃(S) d
[
q ◦ r−1] (p̃)=

∫
∆Θ

r(S| p̃) dq(p̃)= p(S).

Therefore, (p, q)=Φ(P).
Next, take any P ∈∆∆∆Θ and let (p̄, q̄) :=Φ(P). We want to show that

p̄ ºB q̄. Notice that we can view βΘ as a (∆Θ)-valued random variable on
the probability space (∆∆Θ,B (∆∆Θ) ,P). Let γ : ∆∆Θ→ ∆∆Θ be a con-
ditional expectation γ = Eq∼P

[
q|βΘ(q)

]
, which exists by Chatterji (1960,

Theorem 1). So γ is βΘ-measurable, and ∀ Borel S ⊆∆Θ, we have∫
∆∆Θ

q(S) dP(q)=
∫
∆∆Θ

γ(S|·) dP.
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By Doob’s theorem (Kallenberg, 2006, Lemma 1.13), there exists a mea-
surable r :∆Θ→∆∆Θ such that γ= r ◦βΘ. Then, ∀ Borel S ⊆∆Θ,∫
∆Θ

r(S|·) dq̄ =
∫
∆∆Θ

(
r ◦βΘ

)
(S|·) dP=

∫
∆∆Θ

γ(S|·) dP=
∫
∆∆Θ

q(S) dP(q)=β∆Θ(S|P)= p̄(S).

Now, that βΘ is affine and continuous implies

βΘ ◦γ= E
[
βΘ ◦ id∆∆Θ|βΘ

]
,

which is P-a.s. equal to βΘ. That is, βΘ ◦ r ◦βΘ = id∆Θ ◦βΘ, a.s.-P. Equiva-
lently, βΘ ◦ r = id∆Θ, a.s.-q̄. The measurable function

r̄ :∆Θ → ∆∆Θ

ν 7→
r(ν) : r(ν) ∈R(ν)

δν : r(ν) ∉R(ν)

is then q̄-a.s. equal to r and satisfies βΘ ◦ r̄ = id∆Θ. Thus, r̄ is a mean-
preserving spread witnessing p̄ ºB q̄.

CLAIM 10. ºB is a continuous partial order, i.e. ºB⊆ (∆∆Θ)2 is closed.

Proof. This follows from Claims 8 and 9, because the continuous image
of a compact set is compact.

CLAIM 11. The garbling correspondence G is continuous and nonempty-
compact-valued.

Proof. It is nonempty-valued because ºB is reflexive, and upper hemi-
continuous and compact-valued by Claim 10. Toward showing G is lower
hemicontinuous, fix some open D ⊆∆∆Θ. Then,

{p ∈∆∆Θ : G(p)∩D 6= ;}= {
p ∈∆∆Θ : p ºB q, q ∈ D

}
= {p : (p, q) ∈Φ(∆∆∆Θ), q ∈ D}

=Φ1 ◦Φ−1
2 (D)

=β∆Θ
(
Φ−1

2 (D)
)
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where the second line follows from Claim 9, and the last line follows from
the definition of Φ1. By Claim 8, since D is open, so is Φ−1

2 (D). In addi-
tion, β∆Θ is an open map by O’Brien (1976, Corollary 1). So β∆Θ

(
Φ−1

2 (D)
)

is open, implying that G is lower hemicontinuous.

CLAIM 12. The optimal garbling correspondence G∗ is upper hemicon-
tinuous and nonempty-compact-valued.

Proof. As the indirect utility function UA is (by Berge’s theorem) con-
tinuous, so is q 7→ ∫

∆ΘUA dq. The result then follows from Claim 11 and
Berge’s theorem.

CLAIM 13. If q∗ ∈ R(µ) is such that (q∗, q∗) solves the principal’s prob-
lem in (2), then there is a set P ⊆ ext

[
R(µ)

]
such that q∗ ∈ coP and

(p∗, p∗) solves the principal’s problem for every p∗ ∈P .

Proof. By Choquet’s theorem, ∃Q ∈∆[
R(µ)

]
such that:

Q
[
extR(µ)

]= 1,

β∆Θ(Q)= q∗.

By Claim 12 and the Kuratowski-Ryll-Nardzewski Selection Theorem
Aliprantis and Border (2006, Theorem 18.13), which applies here by
Aliprantis and Border (2006, Theorem 18.10), there is some measurable
selector g of G∗. The random posterior qg := β∆Θ(Q ◦ g−1) is then a gar-
bling of q∗. Moreover, that q∗ ∈G∗(q∗) implies

0 ≤
∫
∆Θ

UA dq∗−
∫
∆Θ

UA dqg

=
∫

extR(µ)

[∫
∆Θ

UA dq− max
q̃∈G(q)

∫
∆Θ

UA dq̃
]

dQ(q).

Since the latter integrand is everywhere nonpositive and the integral is
nonnegative, it must be that the integrand is almost everywhere zero.
That is, q ∈G∗(q) for Q-almost every q. Then, by Claim 12, q ∈G∗(q) for
every q ∈ supp(Q). Therefore, P := supp(Q)∩extR(µ) is as desired.
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CLAIM 14. There is some p∗ ∈ ext
[
R(µ)

]
such that (p∗, p∗) solves the

principal’s problem in (2).

Proof. The principal’s objective can be formulated as a mapping Graph(G∗)→
R with (p, q) 7→ ∫

∆ΘUP dq. It is upper semicontinuous and, by Claim 12,
has compact domain. Therefore, there is some solution (p̂, q∗) to (2). As
G(q∗)⊆G(p̂), it is immediate that q∗ ∈G∗(q∗); that is, q∗ is IC. Letting P

be as delivered by Claim 13, and taking any p∗ ∈P completes the claim.

CLAIM 15. If |Θ| <∞, then: p ∈ ext
[
R(µ)

]
if and only if supp(p) is affinely

independent.

Proof. First, we prove the “only if” direction. Take any p ∈ R(µ). Then
µ ∈ co[supp(p)] = co[supp(p)], where the equality follows from Θ being
finite. By Carathéodory’s theorem, there exists an affinely independent
S ⊆ supp(p) such that µ ∈ co(S); without loss, let S be a smallest such set.
Since Θ is finite, S ⊂R|Θ|, so affine independence implies that S is finite.
Therefore, ∃N : S ⇒∆Θ such that, ∀ν ∈ S, the set N(ν) is a closed convex
neighborhood of ν with S∩N(ν)= {ν}. Making {N(ν)}ν∈S smaller, we may
assume for all selectors η of N, {η(ν)}ν∈S is affinely independent.

Now define a specific selector η : S →∆Θ by:

η(ν)=βΘ
(

p (N(ν)∩·)
p (N(ν))

)
.11

Since µ ∈ co(S), ∃w ∈∆S such that
∑
ν∈S w(ν)η(ν) = µ, and (S being mini-

mal) w(ν)> 0 for all ν ∈ S. Let

q := ∑
ν∈S

w(ν)
p (N(ν)∩·)

p (N(ν))

ε :=min
ν∈S

w(ν)
p(N(ν))

Note that q ∈R(µ). Therefore, p−εq
1−ε ∈R(µ) and p ∈ co

{
q, p−εq

1−ε
}
.

11. Note that p(N(ν))> 0 for every ν ∈ S ⊆ supp(p), so that η(ν) is well-defined. That N(ν) is closed and
convex for every ν ∈ S implies η is a selector of N.
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Now, if p ∈ ext
[
R(µ)

]
, then it must be that q = p, even if we make

each neighborhood in {N(ν)}ν∈S smaller, for otherwise p ∈ co
{
q, p−εq

1−ε
}

con-
tradicts p ∈ ext

[
R(µ)

]
. But then, supp(p) = S, and since S is affinely

independent, so is supp(p).
Now, we prove the “if” direction. Suppose p ∈ R(µ) has affinely inde-

pendent support S. Suppose q, q′ ∈R(µ) have p = (1−λ)q+λq′ for some
λ ∈ (0,1). Then the support of q must be contained in S. However, q is
Bayes-plausible: ∑

ν∈S
q(ν)ν=µ= ∑

ν∈S
p(ν)ν.

But S is affinely independent, implying that q(ν) = p(ν) for all ν ∈ S.
That is, q = p. As q, q′,λ were arbitrary, it must be that p is an extreme
point.

Proof of Lemma 1. By Claim 14, a solution to (2) exists. By Claims
14 and 15, (2) admits some optimal solution, (q∗, q∗), where supp(q∗) is
affinely independent if Θ is finite. This implies that q∗ ∈G∗(q∗). Finally,
notice that the optimal value of the problem in (3) is no larger than that
of (2), since the former is a relaxation of the latter. So (q∗, q∗) is also a
solution to (3).

REMARK 1. In the above work, the only properties of UA and UP that we
use are that the former is continuous and the latter upper semicon-
tinuous. For this reason, Lemma 1 applies without change to environ-
ments in which the principal and the agent have different material
motives, to settings in which the principal partially internalizes the
agent’s attention costs, and more.
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