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Abstract

Information disclosure in games influences behavior by affecting the play-

ers’ beliefs about the state, as well as their higher-order beliefs. We first

characterize the extent to which a designer can manipulate players’ beliefs by

disclosing information. Building on this, our next results show that all optimal

solutions to information design problems are made of an optimal private and

of an optimal public component, where the latter comes from concavification.

This representation subsumes Kamenica and Gentzkow (2011)’s single-agent

result. In an environment where the Revelation Principle fails, and hence

direct manipulation of players’ beliefs is indispensable, we use our results to

compute the optimal solution. In a second example, we illustrate how the

private–public decomposition leads to a particularly simple and intuitive res-

olution of the problem.
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1. Introduction

In incomplete-information environments, a designer can affect an agent’s behavior

by manipulating his payoffs, such as by taxing bad behavior, rewarding efforts,

offering insurance, and so on. Alternatively, if the setting allows it, she can affect

his behavior by manipulating his beliefs. Information design studies the latter: a

designer commits to disclosing information to a group of players so as to induce them

to behave in a desired way. The analysis of information design problems, especially

in games, has been a focal point of the recent literature.

Under incomplete information, a player chooses an action based, in part, on his

beliefs about the uncertain state of the world. Since his choice also depends on the

other players’ actions, his beliefs about their beliefs about the state also affect his

decision, as do his beliefs about their beliefs about his beliefs about the state, and

so on. These higher-order beliefs are absent from the one-agent problem, but they

are an inevitable part of strategic interactions under incomplete information.

This paper contributes to the foundations of information design in three ways:

- We establish the necessity of explicit belief manipulation in environments where

the Revelation Principle fails. In these problems, harnessing beliefs is essential

because action recommendations are insufficient for optimal design. Section 5 gives

an example of a class of information design problems that can only be solved by

working directly with players’ higher-order beliefs, and solves it by using the results

in this paper.

- We characterize the extent to which a designer can manipulate players’ beliefs

by disclosing information. Information in games influences players’ behavior by

affecting their beliefs and higher-order beliefs. Thus, information design is truly an

exercise in belief manipulation, whether or not players’ beliefs are used explicitly

when solving a given information design problem. However, a designer disclosing

information cannot generate any combination of beliefs she desires. How much

leeway does she have in manipulating players’ beliefs? Our first proposition answers

this question.

- We characterize the theoretical structure of optimal solutions. Our representa-

tion theorem and its two-step decomposition identify an important way in which

optimal solutions can be seen as a combination of basic communication schemes.

We show that the minimal common-belief components, defined later, are the basic

communication schemes from which all others are constructed. This allows us to

conclude that all optimal solutions consist of an optimal private and of an optimal

public component, where the latter comes from concavification. These results yield

the expression in games of Kamenica and Gentzkow (2011)’s single-agent result.
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In single-agent problems, the minimal components are the agent’s posterior beliefs

(i.e., his first-order beliefs), regardless of the specific environment, so that optimal

solutions can be thought of as distributions over the agent’s posteriors. In games,

the set of minimal common-belief components is much larger, and the relevant ones

vary with the environment.

Section 6 introduces an example, called the Manager’s Problem, that illustrates

how the decomposition into minimal components can divide the optimization prob-

lem into separate simpler steps, and lead to a particularly simple and intuitive

resolution of the problem. This would be difficult to achieve using methods that

compute the solution directly, in ‘one block’, as in Bergemann and Morris (2016)

and Taneva (2014) (which formulate the Myersonian approach to Bayes Nash infor-

mation design as a linear program).1 This is one of the hallmarks of Kamenica and

Gentzkow (2011)’s work; however, it carries over only to some games. In particular,

it is preserved in games with a hierarchical network structure, of which the Manager’s

Problem is an example, provided the designer’s preferences are state-independent.

There, our private-public information decomposition is especially illuminating. The

paper ties this simplifying property of the decomposition to the dimension of the

relevant minimal components relative to that of the final optimal solution.

The one-agent problem has been a rich subject of study since Kamenica and

Gentzkow (2011) (e.g., Ely, Frankel, and Kamenica (2015), Lipnowski and Mathevet

(2015), Kolotilin et al. (2015), etc.). By contrast, the theory of information design

in games is not as well understood. Optimal solutions have been derived in specific

environments, as in Vives (1988), Morris and Shin (2002) and Angeletos and Pavan

(2007). More recent works study information design in voting games (Alonso and

Câmara (2015), Chan et al. (2016)); dynamic bank runs (Ely (2017)); auctions

(Bergemann, Brooks, and Morris (2017)); contests (Zhang and Zhou (2016)); or

focus on public information in games (Laclau and Renou (2016)).

2. The Information Design Problem

Let Θ be a finite set. A (base) game G = ((Ai, ui)i∈N , µ0) describes a set of

players, N = {1, . . . , n}, interacting in an environment with uncertain state θ ∈ Θ,

distributed according to µ0 ∈ ∆Θ. Every i ∈ N has finite action set Ai and utility

function ui : A×Θ→ R, where A =
∏
iAi is the set of action profiles.

The designer is an external agent who discloses information about the state to

the players, but otherwise does not participate in the strategic interaction. The

1The Myersonian approach relies on revelation arguments, and thus cannot be used in environ-
ments where the Revelation Principle fails, as in Section 5.
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designer’s utility function is given by v : A × Θ → R. An information design

environment is a pair 〈v,G〉 consisting of a designer’s preference and a base game.

Information disclosure is modeled by an information structure (S, π), where Si
is player i’s finite message space; S =

∏
iSi is the set of message profiles; and

π : Θ→ ∆S is the information map. In any state θ, the message profile s = (si) is

drawn according to π(s|θ) and player i observes si. Let S−i =
∏
j 6=iSj and assume

without loss that, for all i and si ∈ Si, there is s−i ∈ S−i such that
∑

θ π(s|θ) > 0

(otherwise, delete si).

The designer chooses the information structure at a time when she does not know

θ but has prior µ0, and so she commits ex-ante to disclosing information learned in

the future. One can think of an information structure as an experiment concerning

the state.The pair G = 〈G, (S, π)〉 defines a Bayesian game in which players behave

according to solution concept Σ(G) ⊆ {σ : S → ∆A}. The resulting set of

distributions over action profiles and states is the important object that determines

all payoffs. Thus, define the outcome correspondence associated with Σ as

OΣ(G) :={
γ ∈ ∆(A×Θ) : ∃σ ∈ Σ(G) s.t. γ(a, θ) =

∑
s

σ(a|s)π(s|θ)µ0(θ)∀(a, θ)

}
. (1)

Assume that OΣ(G) is non-empty and compact for any given G. For a fixed base

gameG, we just write Σ(S, π) andOΣ(S, π). The multiplicity of outcomes—standard

in games under most solution concepts—gives us the opportunity to model the

designer’s attitude about selection. Define a selection rule to be a function g :

D ⊆ ∆(Θ×A) 7→ g(D) ∈ D. Denote g(S,π) := g(OΣ(S, π)). The best and the worst

outcomes are natural selection criteria: an optimistic designer uses the max-rule

g(S,π) ∈ argmax
γ∈OΣ(S,π)

∑
a,θ

γ(a, θ)v(a, θ), (2)

while a pessimistic designer uses the min rule (just replace the argmax in (2) with

argmin). Other criteria, such as random choice rules, are also sensible. Under

selection rule g, the value to the designer of choosing (S, π) is given as

V (S, π) :=
∑
a,θ

g(S,π)(a, θ) v(a, θ). (3)

Thus, the information design problem is formulated as sup
(S,π)

V (S, π).
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3. Information Design as Belief Manipulation

For single-agent problems, Kamenica and Gentzkow (2011) established that choosing

an information structure is equivalent to choosing a Bayes plausible distribution over

posterior beliefs. For many-agent problems, to which form of belief manipulation

is information disclosure equivalent? To answer, we start off by defining the space

of beliefs (now, hierarchies of) and distributions over those, and then prove the

equivalence.

3.1. Distributions over Belief Hierarchies

A belief hierarchy ti for player i is an infinite sequence (t1i , t
2
i , . . .) whose components

are coherent2 beliefs of all orders: t1i ∈ ∆Θ is i’s first-order belief; t2i ∈ ∆(Θ ×
(∆Θ)n−1) is i’s second-order belief (i.e., a belief about θ and every j’s first-order

beliefs); and so on. Let Ti denote i’s set of belief hierarchies. Then, let T :=
∏
iTi

and T−i :=
∏
j 6=iTj. Given a prior and an information structure (S, π), every player

i formulates posterior beliefs µi : Si → ∆(Θ × S−i) by Bayes’ rule. When player i

receives a message si from (S, π), he has belief µi(si) about the state and others’

messages. Since every player j 6= i has a belief margΘµj(sj) about the state given

his own message sj, i’s belief about j’s messages sj gives i a belief about j’s belief

about the state and so on. By induction, every si corresponds to a belief hierarchy

hi(si) for player i, and every message profile s corresponds to a profile of belief

hierarchies (hi(si))i. Let h : s 7→ (hi(si))i be the map that associates to every s the

corresponding profile of belief hierarchies. Now, say that an information structure

(S, π) induces a distribution τ ∈ ∆T over profiles of belief hierarchies, called a

belief-hierarchy distribution, if

τ(t) =
∑
θ

π
(
{s : h(s) = t}|θ

)
µ0(θ) (4)

for all t. For example, the information structure in Table 1 induces τ = 3
4
t1/3 + 1

4
t1

when µ0 := µ0(θ = 1) = 1
2
, where tµ is the hierarchy profile in which µ := µ(θ = 1)

is commonly believed.3

2A hierarchy t is coherent if, for all k, beliefs of order k, tki , coincide with all beliefs of lower
order, {tni }

k−1
n=1, on lower order events. For example, margΘt

2
i = t1i .

3To see why, note that Pr(s1, s1) = 3
4 , Pr(s2, s2) = 1

4 , and a player i receiving message s` has
beliefs (2`− 1)/3 that θ = 1 and is certain that j also received s`.
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π(·|0) s1 s2

s1 1 0

s2 0 0

π(·|1) s1 s2

s1
1
2

0

s2 0 1
2

Table 1: A (Public) Information Structure

3.2. Manipulation

In an information design problem with θ ∈ {0, 1},

ui(ai, θ) = −(ai − θ)2 i = 1, 2

v(a, θ) = u1(a1, θ)− u2(a2, θ),

where both “players” care only about matching the state and the designer wants

to favor 1 while harming 2, the designer could obtain her maximal payoff of 1, if she

could somehow tell the truth to 1 while persuading 2 of the opposite. If this were

possible, 1 would be certain that the state is θ, 2 would be certain that the state is

1− θ, and this disagreement would be commonly known. Since Aumann (1976), we

have known that Bayesian agents cannot agree to disagree if they have a common

prior. Given β∗i : Ti → ∆(Θ× T−i), (which is the Mertens-Zamir homeomorphism)

describing i’s beliefs about (θ, t−i) given his hierarchy ti,
4 say that p ∈ ∆(Θ× T ) is

a common prior if

p(θ, t) = β∗i (θ, t−i|ti)p(ti) (5)

for all θ, t and i. That is, all players i obtain their belief map β∗i by Bayesian

updating of the same distribution p. Denote by ∆f the probability measures with

finite support. From here, define

C :=
{
τ ∈ ∆fT : ∃a common prior p s.t. τ = margTp

}
(6)

to be the space of consistent (belief-hierarchy) distributions. In a consistent

distribution, all players’ beliefs arise from a common prior that draws every t with

the same probability as τ , i.e., τ = margTp. Let pτ be the unique distribution p in

(6) (uniqueness follows from Mertens and Zamir (1985, Proposition 4.5))

Proposition 1. The following are equivalent:

(i) τ ∈ ∆fT is induced by some (S, π).

(ii) τ is consistent and
∑

ti
margΘβ

∗
i (·|ti)τi(ti) = µ0 for some i.

4When there is no confusion, we write β∗i (t−i|ti) and β∗i (θ|ti) to refer to the marginals.
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This characterization disciplines the designer’s freedom in shaping players’ be-

liefs, but only to the extent that (i) they are consistent and (ii) that some player’s

(first-order) beliefs satisfy the Bayes plausibility constraint. In the one-agent case,

information disclosure is equivalent to choosing a Bayes plausible distribution over

(posterior) beliefs. In games, it is equivalent to choosing a Bayes plausible and

consistent distribution over (hierarchies of) beliefs. Importantly, it does not matter

which player i satisfies Bayes plausibility in (ii), because by consistency, if it is true

for one player, then it will hold for all.

Returning to the simple example above, if the designer would like to obtain a

payoff of 1 with certainty, she must give full information to player 1, for otherwise

she will not get an expected payoff of 0 from him. At the same time, she must fool

player 2 all the time. Therefore, to reach the upper bound of 1, it would have to be

that β∗1(θ = 1, t2|t1) = 1 and β∗2(θ = 0, t1|t2) = 1 for some (t1, t2), so that (5) cannot

hold. So, no information structure can deliver an expected payoff of 1. Given the

nature of the problem, Proposition 1 rephrases it as saying that the designer wants

players to “maximally disagree” on the value of the state, while their beliefs are

consistent. From here, it is a small step to conclude that it is optimal for 1 to know

the value of the state and for 2 to know as little as possible. In the language of

information disclosure, it is optimal to give full information to 1 and no information

to 2.

4. The Theoretical Structure Of Optimal Solu-

tions

In this section, we prove that optimal solutions to information design problems in

games can be seen as a patchwork of special consistent distributions, regardless of

the method producing those solutions. In particular, this allows us to say that all

optimal solutions consists of an optimal private and of an optimal public component,

where the latter comes from concavification.

4.1. Assumptions

Our approach can handle various selection rules and solution concepts, which is one

of its advantages, provided the following assumptions hold:

(Linear Selection). Assume g is linear.5 Linearity of g is a natural assumption

that demands that the selection criterion be invariant to the subsets of distributions

5For all D′, D′′ and 0 ≤ α ≤ 1, g(αD′ + (1− α)D′′) = αg(D′) + (1− α)g(D′′).
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to which it is applied. The best and the worst outcomes, defined in (2), are linear

selection criteria. Appendix B provides further detail about selection in the space

of belief-hierarchy distributions.

(Invariant Solution). In the main text, we assume Σ = BNE or Σ = ICRk (for

k ∈ N ∪ {∞}) for exposition reasons, though the results below are proved for all

solution concepts Σ that satisfy Assumption 1 in Appendix B. The definition of

Σ = BNE is standard: every i uses a strategy σi such that

suppσi(si) ⊆ argmax
ai

∑
s−i,θ

ui(ai, σ−i(s−i), θ)µi(θ, s−i|si)

for all si and i, where payoffs are extended to mixed actions by linearity. The

definition of Σ = ICRk (derived from Interim Correlated Rationalizability by Dekel,

Fudenberg, and Morris (2007)) is also standard; since it does not interfere with un-

derstanding our results, we relegate it to the next section, where we use it explicitly.

4.2. Representations

When seen as belief manipulation, information design exhibits a convex structure

that allows the designer to induce any belief distribution τ ′′ = ατ + (1−α)τ ′ from τ

and τ ′,6 provided that τ and τ ′ are consistent and τ ′′ is Bayes plausible. In particular,

this is true even if τ and τ ′ are not Bayes plausible. In technical terms, C is con-

vex; moreover, it admits extreme points. In the tradition of extremal representation

theorems (as in the Minkowski–Caratheodory theorem, the Krein-Milman theorem,

Choquet’s integral representation theorem, and so on), the designer thus can gen-

erate any Bayes plausible distribution of beliefs by “mixing” over extreme points.

Importantly, these extreme points can be characterized: they are the minimal con-

sistent distributions (Lemma 2). A consistent distribution τ (∈ C) is minimal if

there is no τ ′ ∈ C such that supp τ ′ ( supp τ . The set of all minimal consistent

distributions is denoted by CM,7 and is nonempty by basic inclusion arguments.

Owing to their mathematical status of extreme points, the minimal consistent

distributions correspond to the basic communication schemes at a given distribution

of states, from which all others are constructed. In the one-agent case, they are

(one-to-one to) the agent’s posterior beliefs, from which all random posteriors are

constructed. The results below formalize their special role in optimal design.8

6Think of τ ′′ as a probability distribution on {τ, τ ′}.
7Minimal belief subspaces appear in different contexts in Heifetz and Neeman (2006), Barelli

(2009), and Yildiz (2015).
8We further illustrate the notion of minimal distribution in Appendix F by characterizing min-

imal distributions for public and conditionally independent information.
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Given selection rule g, write the designer’s ex ante expected payoff as

w : τ 7→
∑
θ,t

gτ (a, θ) v(a, θ), (7)

where gτ ∈ ∆(A×Θ) is the selected outcome in the Bayesian game 〈G, pτ 〉.

Theorem 1 (Representation Theorem). The designer’s maximization problem can

be represented as

sup
(S,π)

V (S, π) = sup
λ∈∆f (CM)

∑
e∈CM

w(e)λ(e)

subject to
∑
e∈CM

margΘpe λ(e) = µ0.
(8)

Corollary 1 (Private–Public Information Decomposition). Fix an environment

〈v,G〉. For any µ ∈ ∆Θ, let

w∗(µ) := sup
e∈CM:margΘpe=µ

w(e). (9)

Then, the designer’s maximization problem can be represented as

sup
(S,π)

V (S, π) = sup
λ∈∆f∆Θ

∑
suppλ

w∗(µ)λ(µ)

subject to
∑

suppλ

µλ(µ) = µ0.
(10)

From the representation theorem, the designer maximizes her expected utility as

if she were optimally mixing over minimal consistent distributions, subject to pos-

terior beliefs averaging to µ0 across those distributions. Every minimal distribution

induces a Bayesian game and leads to an outcome for which the designer receives

some expected utility. Every minimal distribution also induces a distribution over

states, margΘpe, and the “further” it is from µ0, the more it “costs” the designer to

use it. In this sense, the constraint in (8) can be seen as a form of budget constraint.

The corollary decomposes the representation theorem into two steps. First, there

is a maximization within—given by (9)—that takes place among all the minimal

distributions with marginal µ and for all µ. The argument is that all minimal

distributions with the same µ contribute equally toward the Bayes plausibility con-

straint; hence, the designer should choose the best one among them. Since there

are finitely many actions and states, {w(e) : e ∈ CM s.t. margΘpe = µ} ⊆ R must
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be bounded above, so this step is well-defined. All minimal distributions represent

private information—the uninformative ones, {δµ : µ ∈ ∆Θ}, are also a form of

private information. In this sense, maximization within extracts the optimal private

information component of a solution and produces (private) value-function w∗. In

applications of the corollary, we may want to maximize within particular subsets of

minimal distributions, which will be discussed in the next subsection.

Second, there is a maximization between that concavifies the value function,

thereby “patching together” the minimal distributions that are solutions to maxi-

mizations within. This step is akin to a public signal λ that sends all players to some

minimal distributions e, so that it becomes common knowledge among the players

that they are in a particular e. Let

(cavw∗)(µ) = inf{g(µ) : g concave and g ≥ w∗}

be the concave envelope of w∗ evaluated at µ. From standard arguments, as in Rock-

afellar (1970, p.36), the rhs of (10) is a characterization of the concave envelope of

function w∗, so that the corollary delivers a concave-envelope characterization of op-

timal information design. In the one-agent case, {e ∈ CM s.t. margΘpe = µ} = {µ},
hence w∗ = w in (9) and the theorem comes down to maximization between.

5. The Necessity To Manipulate Beliefs

In single-agent information design, the Revelation Principle applies very generally

and makes action recommendations a close substitute for explicit belief manipu-

lation. In information design in games, this is no longer true. As this section

illustrates, there are important environments in which the Revelation Principle fails

and explicit belief manipulation becomes essential. To avoid confusion, we should

mention that the solution concept will not be responsible for the failure of the Rev-

elation Principle in this section. Rather, it results from using min instead of max

as a selection rule. Max lets the designer choose her favorite equilibrium, while min

requires all equilibria to provide at least a given payoff for the designer.9 In these

problems, our results can be used to compute an optimal solution.

Since Rubinstein (1989), we have known that strategic behavior in games of

incomplete information can depend crucially on the tail of the belief hierarchies. In

9This distinction between one vs. many equilibria is reminiscent of the distinction between
mechanism design and implementation theory. In the latter, the Revelation Principle is known to
be inadequate. In one-agent information design, there is little difference between using min vs.
max, because the multiplicity of outcomes comes from indifferences. Thus, provided the designer
is satisfied with ε-optimality, her optimal value is nearly unchanged and achievable by action
recommendations.
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a design context, we may find it unsettling to induce the desired behavior by relying

crucially on information acting on beliefs of very high order. In the example below,

the solution concept reflects the designer’s intention to disclose information that is

robust to misspecification of all beliefs above a given level. We focus on the classic

global game of investment decisions of Carlsson and van Damme (1993) and Morris

and Shin (2003), but the same analysis would extend to other games, in particular

to other global games.

5.1. Investment Game with Bounded Depths of Reasoning

Two players decide whether or not to invest, {I,N}, given uncertain state θ ∈
{−1, 2} and state distribution µ0 = Prob(θ = 2). The payoffs of the interaction are

summarized in Table 2.

(u1, u2) I N

I θ, θ θ − 1, 0

N 0, θ − 1 0, 0

Table 2: The Investment Game.

To study bounded depths of reasoning, we use finitely many iterations of the

ICR algorithm (Dekel, Fudenberg, and Morris (2007)) and resolve any remaining

multiplicity via the selection criterion. Given an information structure (S, π), let

Ri,0(si) := Ai for all i ∈ N and si ∈ Ti. Then, for all k ∈ N, define

Ri,k(si) :=


there exists ν ∈ ∆(S−i ×Θ× A−i) s.t.:

ai ∈ Ai : (1) ν(s−i, θ, a−i) > 0⇒ aj ∈ Rj,k−1(sj)∀j 6= i

(2) ai ∈ argmaxa′i
∑

s−i,θ,a−i
ν(s−i, θ, a−i)ui(a

′
i, a−i, θ)

(3)
∑

a−i
ν(s−i, θ, a−i) = µi(s−i, θ|si).


ICR profiles at s are given by R(s) =

∏
iRi(si), where Ri(si) := ∩∞k=0Ri,k(si).

Our choice of solution concept is ICRk :=
∏

iRi,k because Ri,k involves only beliefs

of up to order k. That is, when the above procedure is stopped at finite k, we

are left with the set of predictions that correspond to actions that a type si, who

can reason only through k-many levels, cannot rationally eliminate. In a recent

paper, Germano, Weinstein, and Zuazo-Garin (2016) provide epistemic foundations

for ICRk. In particular, ICR2 corresponds to common 1-belief of rationality.

Suppose that the designer would like to persuade both players to invest irrespec-

tive of the state: v(a1, a2) = 1(a1 = I) + 1(a2 = I). Assume also that the designer
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adopts a robust approach to the problem in that she evaluates her payoffs at the

worst k-rationalizable profile when there are many. Define g : 2Ai → Ai as

g(A′i) =

{
I if A′i = {I},
N otherwise

and then define the outcome correspondence for any k ∈ N

Ok
ICR(S, π) :=

{
γ ∈ ∆(A×Θ) : γ(a, θ) :=

∑
s:a=

∏
i g(Ri,k(si))

π(s|θ)µ0(θ) ∀(a, θ)

}
. (11)

5.2. Optimal Design

For simplicity, let us assume k = 2. For any i, let µi = Probi(θ = 2) be i’s first-order

belief, and λi = Probi(µ−i >
2
3
) be his second-order belief. Thus, we write

g(Ri,2(·)) =

{
I if 3µi − 2 + λi > 0

N otherwise.

This means that a player invests either if he is optimistic enough about the state

(large µi) or optimistic enough that the other player is optimistic enough (large λi).

Maximization Within. For µ > 2
3
, both players are optimistic enough to invest under

no information, hence a public signal announcing µ—which is a minimal distribution

of dimension 1× 1—achieves the designer’s maximal payoff. For µ ≤ 2
3
, the largest

minimal distributions that we need to consider are of dimension 2× 2: every player

must have at least one first-order belief above 2
3

(so that the designer can leverage the

second-order beliefs) and at least one below (so that Bayes plausibility is preserved).

In the distribution below, let µ′′1 = µ′′2 = 2/3 + ε.

eµ (µ′2, λ
′
2) (µ′′2, λ

′′
2)

(µ′1, λ
′
1) A B

(µ′′1, λ
′′
1) C 1− A−B − C

From here, we try to achieve the maximal payoff—i.e., investment by both players

with probability one—for as many priors µ ≤ 2
3

as possible. We solve the following

system in Appendix D: 
3µ′i − 2 + λ′i > 0 ∀i
µ′′i = 2

3
+ ε ∀i

eµ is consistent,

and obtain



Information Design in Games 13

e∗∗µ

(
(2+3ε)µ
4−3µ+6ε

, 3µ
4−3µ+6ε

) (
2
3

+ ε, 0
)

(
(2+3ε)µ
4−3µ+6ε

, 3µ
4−3µ+6ε

)
1− 3µ

2+3ε
3µ

4+6ε(
2
3

+ ε, 0
)

3µ
4+6ε

0

For all µ > 8/15, e∗∗µ always induces (I, I) as the only ICR2 profile and gives the

designer a payoff of 2.

Remark. Under a direct approach based on the Revelation Principle, every player

is given an action recommendation instead of the message inducing that action. In

the above, for µ > 8/15, the players would therefore always be told to invest, which

is completely uninformative. While (I, I) still belongs to ICR2 under no information,

so does (NI, NI). This is why a direct approach fails to guarantee uniqueness, while

(I, I) is uniquely rationalizable in e∗∗µ .

For µ ≤ 8/15, the designer can no longer achieve investment by both players.

She will therefore focus on maximizing the likelihood of one of the players choosing

to invest. She can achieve that by talking privately to one of the players, which

implies that she will use minimal distributions of dimension 1 × 2. For a given µ,

any 1× 2 minimal distribution can be parameterized as:10

eµ (µ′2, δµ1) (µ′′2, δµ1)

(µ1, λ1) 1− p p

In order to foster investment, the designer needs to maximize Player 1’s second-order

beliefs, λ1 = Prob(µ2 >
2
3
). This in turn requires µ′′2 >

2
3
. Moreover, the more likely

µ′′2 is, while Bayes plausibility is satisfied, the larger λ1 is. Hence, the designer will

set µ′2 = 0 and µ′′2 = 2
3

+ ε, with arbitrarily small ε > 0.11 Putting everything

together, for µ ≤ 8
15

, the optimal private minimal distribution must be

e∗µ (0, 0) (2
3

+ ε, 0)

(µ, 3µ
2+3ε

) 1− 3µ
2+3ε

3µ
2+3ε

Under e∗µ, player 1 chooses I with certainty as long as

3µ1 − 2 + λ1 = 3µ− 2 +
3µ

2 + 3ε
> 0 ⇔ µ >

4

9
+ ε′,

10By symmetry, it is without loss to talk only to Player 2.
11We need the ε because, in this example, w(e∗µ) is not upper-semicontinuous.
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where ε′ = 2ε
9(1+ε)

, and chooses NI otherwise, while player 2 chooses I with probability
3µ

2+3ε
. Hence,

w∗(µ) = sup
ε
w(e∗µ) = 1

(
µ ≥ 4

9

)
+

3

2
µ.

Hence, maximization within gives the designer an expected payoff of

w∗(µ) =

{
2 if µ > 8/15

1
(
µ ≥ 4

9

)
+ 3

2
µ otherwise,

which is depicted as the dashed graph in Figure 1.

Maximization Between. Concavification completes the solution. For all µ0 ≤ 8
15

, the

designer puts probability 1 − 15
8+15ε′

µ0 on e∗0 and 15
8+15ε′

µ0 on e∗∗8
15

+ε′
, giving her an

expected payoff of 30
8+15ε′

µ0. The optimal information structure that corresponds to

this is

π( · |θ = −1) s′2 s′′2

s′1
2−3µ+3ε

(2+3ε)(1−µ)
(1−3ε)µ

(4+6ε)(1−µ)

s′′1
(1−3ε)µ

(4+6ε)(1−µ)
0

π( · |θ = 2) s′2 s′′2

s′1 0 1
2

s′′1
1
2

0

1

1

2

µ0

V ∗(µ0)

4
9

2
3

8
15

Private

to both

Private to one

player

Public & private

to both

Silence

Figure 1: Value of maximization within (dashed) and between (solid) without
constraint.

By manipulating beliefs, the designer decreases the lowest prior µ0 at which (I, I)

can be uniquely rationalized from 2
3

to 8
15

. She achieves her highest possible payoff

for all µ0 ∈ [ 8
15
, 2

3
] by using 2× 2 minimal distributions and informing both players.

In the optimal information structure for these priors, each player receives one of two
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signals, good or bad. When a player receives the good signal, he believes that the

state is high with probability 2/3+ε, and so he invests based on his first-order beliefs.

When a player receives the bad signal, he also invests, but because he believes that

the other player is likely enough to have received the good signal. In the latter,

private information to player i fosters investment by player j via j’s second-order

beliefs, which is a form of bandwagon effect. Under ICR2, this effect occurs via

second-order beliefs only, but as players become more sophisticated, it extends to

higher-order beliefs, giving more flexibility to incentivize investment. We conjecture

that the threshold prior above which the designer can obtain maximal payoff is

decreasing in k. Importantly, an optimal information structure under ICRk is likely

to be suboptimal under ICRk−1, as the designer puts resources into manipulating

k-order beliefs (as in the top left cell of e∗µ for k = 2), which is useless under ICRk−1.

Notice that none of the above would be possible under public information, since

λi > 0 if and only if µi > 2/3.

6. Comparison to the Single-Agent Problem

In this section, we study a simple departure from the single-agent case that still cap-

tures a strategic interaction. We show how the dimension of the relevant minimal

distributions tells us whether a problem can be decomposed into separate simpler

steps where optimization is done over fewer dimensions, or must be solved directly

in one step optimizing over all dimensions. Additionally, the simple framework pre-

sented below can serve as a blueprint for more general problems in which interactions

between (groups of) players follow a similar structure. In these games, a first group

of players cares only about each other’s actions and the state; a second group cares

only about each other’s actions and those of the group above them, but not about

the state or any other group’s actions; and so on. These structures can be used

to model many interesting interactions such as organizational design within firms,

technology adoption, and financial markets.

6.1. The Manager’s Problem

Consider a situation in which a manager is in charge of two employees collaborating

on a project: a supervisor (P) and a worker (W). Suppose that the project can be

either easy (θ = 0) or hard (θ = 1), distributed according to µ0 := µ0(θ = 1) = 1/6,

which is common knowledge. The supervisor and the worker simultaneously choose

an effort level. The supervisor’s choice can be interpreted as deciding whether to

monitor the worker (aP = 1) or not monitor him (aP = 0). The worker can choose
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to either put forth high effort (aW = 1) or low effort (aW = 0). The strategic

interaction between the two employees is summarized in Table 3.

θ = 0 aW = 0 aW = 1

aP = 0 1, 1 1, 0

aP = 1 0, 0 0, 1

θ = 1 aW = 0 aW = 1

aP = 0 0, 1 0, 0

aP = 1 1, 0 1, 1

Table 3: Game between supervisor (row) and worker (column).

On the one hand, the supervisor is only interested in monitoring the worker if the

project is hard, regardless of the worker’s action choice. On the other hand, the

worker only wants to exert high effort if he is being monitored, regardless of the state.

The manager decides on what information to disclose in a way that maximizes the

expected value of her objective v : {0, 1}2×Θ→ R.The solution concept is Σ = BNE

and the selection rule is max so when there is multiplicity, players are assumed to

coordinate on the manager’s preferred equilibirum.

6.2. State-Independent Objective

Let us first consider state-independent designers, that is v : A→ R. Our representa-

tion theorem prescribes maximizing first over minimal belief-hierarchy distributions,

and then over distributions thereof. However, this problem can be daunting if we do

not narrow down the set of minimal distributions to consider.12 We must rely on the

specific structure of the problem to identify the relevant minimal distributions over

which to perform the maximization within. Using the structure of the Manager’s

Problem, we conclude that:

(i) without loss, we can restrict attention to distributions over first-order beliefs

for the supervisor (µ1 ∈ ∆Θ) and second-order beliefs for the worker (λ2 ∈
∆∆Θ). This is proven in Propositions 6 and 7 in Appendix E. Therefore, the

manager’s maximization can take place over distributions η in A := ∆f (∆Θ×
∆∆Θ).13 We denote η1 := margµ1

η and η2 := margλ2
η.

(ii) by an argument similar to the revelation principle, the optimal distribution

will be of dimension 2 × 2 or smaller. That is, at most two different beliefs

12In Proposition 10 in Appendix F, we show that for every minimal distribution e, there exists
an information design problem 〈v,G〉 such that e is uniquely optimal. This means that, a priori,
no minimal distribution e can be discarded. This is no longer true once we fix an enviromnent
〈v,G〉.

13In what follows, we refer to η as a belief-hierarchy distribution, although technically we mean
a belief-hierarchy distribution with marginal η over (µ1, λ2).
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per player need to be induced in order to generate all possible equilibrium

outcomes.

From (i) and (ii), it is not hard to show that every consistent η of dimension 2×2

can be generated as a convex combination of two smaller distributions that are in fact

minimal. We thus identify two classes of minimal consistent distributions. The first

class corresponds to a public signal and consists of distributions of dimension 1× 1:

one first-order belief µ1 for the supervisor and one second-order belief λ2(µ1) = 1 for

the worker, where the latter satisfies consistency. The second class is generated via

a private signal to the supervisor and the distributions in it are of dimension 2× 1.

This corresponds to two first-order beliefs, µ′1 and µ′′1, and one second-order belief,

which by consistency needs to satisfy λ2(µ′1) = η1(µ′1).

The manager’s information design problem can be thus decomposed into maxi-

mization within

w∗(µ) := max
λ2∈∆∆Θ

∑
suppλ2

v
(
a∗1(µ1), a∗2(λ2)

)
λ2(µ1)

subject to
∑

suppλ2

µ1λ2(µ1) = µ (12)

and maximization between

V ∗(µ0) := max
η2∈∆Θ

∑
supp η2

w∗(µ)η2(µ)

subject to
∑

supp η2

µ η2(µ) = µ0. (13)

In the maximization within, the manager informs the supervisor optimally, thereby

choosing the distribution of his first-order beliefs for any state distribution µ. By

consistency, this distribution needs to give µ on average and also pins down the

second-order beliefs of the worker.14 In other words, this step is done by optimizing

over the minimal consistent distributions of dimension 2 × 1 or 1 × 1 for each µ.

In the maximization between, the manager then chooses the optimal randomization

over the minimal distributions from the first step. This is equivalent to choosing

optimally the distribution over the worker’s second-order beliefs, η2, which can be

also interpreted as a distribution over the µ’s of minimal distributions and therefore

needs to satisfy Bayes plausibility with respect to the common prior µ0.

To make things easier to illustrate, consider a manager who is interested only in

the worker’s action: v(a, θ) = aW .15 The worker’s equilibrium action is a function

14Maximization within is not a concave envelope because λ2 enters the objective function.
15This type of objective function is reasonable when the worker is the main productive unit, as

in the three-tier hierarchy model of Tirole (1986).
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µ

w∗(µ), V

Private to S

Public

Full

1
2

1
4

1
6

1

V ∗ = 2
3

Vp = 1
3

Vf = 1
6

1

Figure 2: Value of information.

of his second-order beliefs. Denoting λ̃2 := λ2({µ1 ≥ 1}),

a∗W (λ̃2) =

{
0 if λ̃2 < 1/2

1 if λ̃2 ≥ 1/2.

Maximization within proceeds as follows:

- for µ ∈ [0, 1
4
) ∪ [1

2
, 1], the optimal minimal distribution is of dimension 1 × 1

with µ1 = µ and λ2(µ1) = 1.

- for µ ∈ [1
4
, 1

2
), the optimal minimal distribution is of dimension 2 × 1 with

µ′1 = 0, µ′′1 = 1
2
, and λ2(µ′1)µ′1 + (1− λ2(µ′1))µ′′1 = µ.

For µ ≥ 1
2

it is optimal to make the posterior public, as that would ensure λ̃2 = 1

and w∗(µ) = 1. When µ < 1
2
, no public posterior can achieve the same outcome.

However, by informing the supervisor privately and sending him either to µ′1 = 0 or

to µ′′1 = 1
2
, the manager can achieve λ̃2 ≥ 1

2
and hence w∗(µ) = 1. This would be

possible to achieve with a minimal distribution of dimension 2× 1 as long as µ ≥ 1
4
,

which ensures consistency can be satisfied. For µ1 <
1
4
, it must be that λ̃2 <

1
2

in

any consistent minimal distribution and hence w∗(µ) = 0. Concavifying the thus

constructed w∗(µ) (dashed red lines in Firgure 2), gives us the value that can be

achieved by the designer when using both public and private signals optimally (solid

red graph).

For the state distribution µ0 = 1
6
, the overall optimal distribution is constructed

as follows: with probability 1
3

send both players to a minimal distribution e∗µ=0 with

µ = µ1 = λ2 = 0, and with probability 2
3

send them to a minimal distribution with
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µ = 1
4
, which involves a private signal to the supervisor that splits his first-order

beliefs into µ′1 = 0 and µ′′1 = 1
2
, with λ2 = 1

2
by consistency. Notice that the Bayes

plausibility requirement with respect to µ0 is also satisfied: 0× 1
3

+ 1
4
× 2

3
= 1

6
. The

information structure that induces this optimal belief-hierarchy distribution is given

by:

π(·|θ = 0) s0 s1

s0 2/5 2/5

s1 0 1/5

π(·|θ = 1) s0 s1

s0 0 0

s1 0 1

Note that the same optimal information structure can be computed directly, in

“one block”, using the linear program of the BCE approach (Bergemann and Morris

(2016), Taneva (2014)). Although linear programs can be solved in polynomial time,

it is instructive to derive the solution in a decomposed way, as an optimal public

randomization over private communication schemes that only inform the supervisor

about the state.

The overall optimal design gives the designer an expected payoff of V ∗(µ0) =
2
3
. As benchmark cases, we have also plotted the values for the case of public

information (Vp = 1
3
) and full information (Vf = 1

6
). On the other hand, releasing

no information at all will result in a payoff of 0 with certainty.

6.3. State-Dependent Objective

Above we illustrated how the representation theorem can be used to divide the opti-

mization procedure into steps reminiscent of dynamic programming, which simplifies

the problem. From the description of the Manager’s Problem, intuition suggests that

sending a signal to the supervisor and a garbling of that to the worker should be

sufficient for optimal disclosure. Nevertheless, the sufficiency of such a procedure is

not immediately obvious. To see this, we first state a result showing that minimal

consistent distributions are dense in the set of all consistent distributions (despite

being small in a measure-theoretic sense, by Proposition 9 in Appendix F):

Proposition 2. Let Cµ = {τ ∈ C : margΘpτ = µ}. For n > 1, CM ∩ Cµ and Cµ\Eµ
are dense in Cµ for all µ.

A direct consequence of the denseness result is that maximization within, alone,

gets us arbitrarily close to the value of maximization between, as any non-minimal

distribution can be approximated arbitrarily well by some minimal one. This points

to an important difference between extremal decomposition in games as opposed to
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in one-agent problems. In the latter, the set of first-order beliefs is not dense in

the set of all Bayes plausible belief distributions, so there is typically a gap between

maximization within and between. To obtain such a gap in a game, the relevant min-

imal distributions for maximization within must be smaller dimensional objects than

the final output, while still sufficient to achieve global optimality via maximization

between. Whether this is the case depends on the specifics of the environment. For

example, for state-independent managers, we have seen that working with the rele-

vant minimal distributions caused a gap between the values of maximization within

and between (see Figure 2). However, this is not the case when the designer’s ob-

jective depends on both a and θ. Now, the manager needs to consider also minimal

distributions of dimension 2× 2, since the first-order beliefs of the worker may also

play a role (part (i) in Section 6.2 no longer holds). For example, when the worker

has a second-order belief λ2 = 1
2
, which makes him indifferent between the two

actions, his first order-beliefs can be used to achieve coordination with the state.

7. Conclusion

This paper contributes to the foundations of information design. Our representation

theorem deconstructs the problem into maximization within and concavification,

yielding the expression of Kamenica and Gentzkow (2011) in games. These results

provide a theoretical solution to the information design problem. Our method en-

ables comparative statics with respect to the prior, and it is flexible with respect

to the solution concept and to the selection criterion resolving the multiplicity of

outcomes.

Our two applications emphasize different aspects of our results. In the first,

revelation arguments fail. Thus, working directly with beliefs is indispensable, and

our results give instructions on how to compute the optimal information structure.

In the second, our results tie the simplifying property of extremal decomposition to

the dimension of the relevant minimal components.16

16In a three-agent Manager’s Problem that would extend our application in the obvious way, the
manager could talk to one agent while keeping the other two uninformed, talk to two agents while
keeping the last one uninformed, or talk to all three simultaneously.



Information Design in Games 21

Appendix

A. Proof of Proposition 1

Proof. Let τ be induced by some (S, π), so that

τ(t) =
∑
θ

π
(
(hµ)−1(t)

∣∣θ)µ0(θ) (14)

for all t ∈ supp τ . Define p ∈ ∆(Θ× T̂ ) as

p(θ, t) = π
(
(hµ)−1(t)

∣∣θ)µ0(θ) (15)

for all θ and t ∈ supp τ . It is immediate from (14) and (15) that margTp = τ and

so margTip = τi for all i. When any player i forms his beliefs µi : Ti → ∆(Θ× T−i)
under information structure (supp τ, π), he computes the conditional of p given ti.

That is, player i’s belief hierarchies are derived from p(·|ti) for all i and, thus,

p(θ, t) = β∗i (θ, t−i|ti)margTip(ti)

for all i, θ, and t ∈ supp τ . We conclude that τ ∈ C. Finally,∑
ti∈supp τi

β∗i (θ|ti)τi(ti) := margΘp(θ) =
∑
t

π
(
(hµ)−1(t)

∣∣θ)µ0(θ) = µ0(θ)

for all θ, which proves Bayes plausibility.

Suppose now that τ ∈ C and satisfies Bayes plausibility. Let us show that these

conditions are sufficient for τ to be induced by some some (S, π). Define information

structure (supp τ, πτ ) where

πτ (t|·) : θ 7→ 1

µ0(θ)
β∗i (θ, t−i|ti)τi(ti) (16)

for all t ∈ supp τ , which is defined independently of the choice of i because τ ∈ C.
First, let us verify that πτ is a valid information structure. Bayes plausibility says∑

ti∈supp τi

β∗i (θ|ti)τi(ti) = µ0(θ),

which guarantees that

πτ (t|θ) =
1

µ0(θ)

∑
ti∈supp τi

β∗i (θ|ti)τi(ti) = 1,

and in turn that π(·|θ) is a probability distribution for every θ. By construction,

this information structure is such that, when any player j receives tj, his beliefs are
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µj(·|tj) = β∗j (·|tj), also because τ ∈ C. To prove that πτ generates τ , we need to

check that

τ(t) =
∑
θ

π(t|θ)µ0(θ) (17)

for all t ∈ supp τ . By (16), the rhs of (17) is equal to β∗i (t−i|ti)τi(ti), which equals

τ(T̂ ) because τ ∈ C (in particular, because margΘp = τ).

B. Solution Concepts

B.1. Assumptions

For any τ ∈ C, the pair G = 〈G, pτ 〉 describes a Bayesian game in which players

behave according to solution concept Σ∗(G) ⊆ {σ : supp τ → ∆A}, which results in

an outcome correspondence

OΣ∗(G) :={
γ ∈ ∆(A×Θ) : ∃σ ∈ Σ∗(G) s.t. γ(a, θ) =

∑
t

σ(a|t)pτ (t, θ)∀(a, θ)

}
. (18)

Again, for a fixed base game, we just write Σ∗(τ) and OΣ∗(τ).

Assumption 1. Given Σ, there is a solution concept Σ∗ such that

OΣ∗(τ) =
⋃

(S,π) induces τ

OΣ(S, π), and

∀τ, τ ′, if σ ∈ Σ∗(τ) then ∃σ′ ∈ Σ∗(τ ′) s.t. σ(t) = σ′(t),∀t ∈ supp τ ∩ supp τ ′.

Solution concept Σ∗ is relevant only if it captures all outcomes from Σ, hence

the first requirement. The second requirement is called invariance: it says that

play at a profile of belief hierarchies t under Σ∗ does not depend on the ambient

distribution from which t is drawn. This property is important because:

Proposition 3. If Σ∗ is invariant, then OΣ∗ is linear.17

It is not true for all Σ that OΣ(S, π) = OΣ(τ) whenever (S, π) induces τ . Indeed,

the same solution concept may not generate the same outcome distributions whether

it is applied to (S, π) or to its induced τ . In Bayes Nash equilibrium, for example,

the existence of many messages s inducing the same profile t of hierarchies can

create opportunities for correlation among those s and, hence, for play, that cannot

17For all τ ′, τ ′′ ∈ C and α ∈ [0, 1], αOΣ∗(τ ′) + (1 − α)OΣ∗(τ ′′) = OΣ∗(ατ ′ + (1 − α)τ ′′), where
αOΣ∗(τ) = {αγ : γ ∈ OΣ∗(τ)}.
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be replicated by t alone. That said, for various solution concepts Σ, epistemic game

theory has identified invariant Σ∗, sometimes Σ∗ := Σ, such that OΣ∗(τ) = OΣ(S, π)

whenever (S, π) induces τ . We borrow from that literature to define the appropriate

Σ∗ satisfying Assumption 1 for Σ := BNE. In Section 5, we use interim correlated

rationalizability, which is invariant and satisfies (i) with Σ∗ = Σ.

B.2. Illustration

For applications in Bayes Nash information design (Σ := BNE), it is useful to know

which solution concept Σ∗ satisfies OΣ(S, π) = OΣ∗(τ) whenever (S, π) induces τ ,

and whether Σ∗ is invariant. This is done in Proposition 4.

Definition 1. Given τ ∈ C, the set of belief-preserving Bayes correlated equilibria

in 〈G, pτ 〉, denoted BCEB(τ), consists of all σ : supp τ ×Θ→ ∆A such that for all

i, ∑
a−i,t−i,θ

pτ (t, θ)σ(ai, a−i|ti, t−i, θ)(ui(ai, a−i, θ)− ui(a′i, a−i, θ)) ≥ 0 (19)

for all ai, a
′
i and ti ∈ supp τi, and for all i,

σi(ai|ti, t−i, θ) :=
∑

a−i∈A−i

σ(ai, a−i|ti, t−i, θ) (20)

is independent of t−i and θ.18

In a correlated equilibrium, player i of type ti receives an action recommenda-

tion ai that is incentive-compatible by (19). This condition alone defines a Bayes

correlated equilibrium (see Bergemann and Morris (2016) and our conclusion). In

addition, (20) requires that i’s action recommendation reveal no more information

to i about the other players’ hierarchies and the state of the world than what is

already contained in his hierarchy. Thus, after receiving the action recommenda-

tion, each player’s belief hierarchy remains unaltered. Forges (2006) introduced a

condition equivalent to (20), while Liu (2015) introduced the belief-preserving Bayes

correlated equilibrium.

Proposition 4. BCEB is invariant and for all τ ∈ C,

OBCEB(τ) =
⋃

(S,π) induces τ

OBNE(S, π).

18Note that here, we have extended the definition of the solution concept σ to allow for de-
pendence on the state θ in addition to the type profile. This allows us to capture correlation
between actions that could have only resulted from redundant types, which do not exist on the
universal type space. We accordingly adapt the definition of invariance in the obvious way, i.e. the
equivalence now must hold, in addition, for every θ ∈ Θ.
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This proposition19 demonstrates that BCEB is invariant and that the set of BCEB

outcomes from τ is the union of all BNE outcomes for all information structures that

induce τ . Then, as Bergemann and Morris (2016, p.507) put it, the belief-preserving

BCE captures the implications of common knowledge of rationality and that players

know exactly the information contained in τ (and no more) given the common prior

assumption.

C. Proof of Theorem 1

Lemma 1. C is convex.

Proof. Take α ∈ [0, 1] and τ ′, τ ′′ ∈ C. By definition of C, there are pτ ′ and pτ ′′ such

that margTpτ ′ = τ ′ and margTpτ ′ = τ ′ and

pτ ′(θ, t) = β∗i (θ, t−i|ti)τ ′i(ti),
pτ ′′(θ, t) = β∗i (θ, t−i|ti)τ ′′i (ti),

(21)

for all θ, i and t. Define τ := ατ ′ + (1 − α)τ ′′ and note that τi = ατ ′i + (1 − α)τ ′′i ,

by the linearity of Lebesgue integral. Define

pτ (θ, t) := β∗i (θ, t−i|ti)τα,i(ti)

for all i, θ, and t ∈ supp τ . Notice that pτ is well-defined, because of (21). Thus,

margTpτ = αmargTpτ ′ + (1− α)margTpτ ′′ = ατ ′ + (1− α)τ ′′ = τ

and we conclude that τ ∈ C.

Although C is convex, it is not closed because we can build sequences in C with

growing supports, only converging to a belief-hierarchy distribution with an infinite

support. Still, the next lemma proves that minimal (consistent) distributions are

the extreme points of the set of consistent distributions.

Lemma 2. E = CM.

Proof. An extreme point of C is a τ ∈ C such that τ = ατ ′ + (1 − α)τ ′′ if and

only if τ ′ = τ ′′ = τ . We first show that if τ ∈ CM, then τ is an extreme point

of C. Suppose not. That is, fixing α ∈ (0, 1), let τ = ατ ′ + (1 − α)τ ′′ for some

τ ′ 6= τ ′′ and define λ̃ := max{λ ≥ 0 : τ + λ(τ − τ ′′) ∈ C}. Then, it must be that

τ̃ := τ + λ̃(τ − τ ′′) 6= τ . We want to show that supp τ̃ ( suppτ . To see this, let

t̃ ∈ supp τ̃ and suppose t̃ /∈ supp τ . Then, by definition, τ̃(t̃) = −λτ ′′(t̃) ≤ 0, which

19The proof is available to the reader upon request.
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is impossible. Moreover, there is a t ∈ supp τ , such that t /∈ supp τ̃ . If not, it would

imply that for all t ∈ supp τ , τ̃(t) > 0. When this is the case, however, we can find

a λ′ > λ̃, s.t. τ + λ′(τ − τ ′′) ∈ C, a contradiction on the fact that λ̃ is in fact the

max. We conclude that supp τ̃ ( suppτ and thus τ /∈ CM. Conversely, suppose τ

is not minimal, i.e., there is a τ ′ ∈ C such that supp τ ′ ( supp τ . Define τ ′′ ∈ ∆T

as τ ′′(·) := τ( · | supp τ \ supp τ ′), the conditional distribution of τ given the subset

supp τ \ supp τ ′. Clearly

τ = ατ ′ + (1− α)τ ′′ (22)

where α = τ(supp τ ′) ∈ (0, 1). Since supp τ ′ is belief-closed, so is supp τ \ supp τ ′.

Since τ ′′ is derived from a consistent τ and is supported on a belief-closed subspace,

τ ′′ is consistent. Given that τ ′′ 6= τ ′, (22) implies that τ is not an extreme point.

Proposition 5. For any τ ∈ C, there exist unique {ei}ni=1 ⊆ CM and weakly positive

numbers {αi}ni=1 such that
∑n

i=1 αi = 1 and τ =
∑n

i=1 αiei.

Proof. Take any τ ∈ C. Either τ is minimal, in which case we are done, or it is

not, in which case there is τ ′ ∈ C such that supp τ ′ ( supp τ . Similarly, either τ ′

is minimal, in which case we conclude that there exists a minimal e1 := τ ′ with

support included in supp τ , or there is τ ′′ ∈ C such that supp τ ′′ ( supp τ ′. Given

that τ has finite support, this procedure eventually delivers a minimal consistent

belief-hierarchy distribution e1. Since τ and e1 are both consistent and hence, their

supports belief-closed, supp (τ \ e1) must be belief-closed. To see why, note that for

any t ∈ supp (τ \e1), if there were i, t̂ ∈ supp e1 and θ ∈ Θ such that pτ (θ, t̂−i|ti) > 0,

then this would imply pτ (θ, t̂−i, ti) > 0 and, thus, pτ (θ, ti, t̂−(ij)|t̂j) > 0 (where t̂−(ij)

is the belief hierarchies of players other than i and j). As a result, player j would

believe at t̂j (a hierarchy that j can have in e1) that i believes that players’ types

could be outside supp e1 (because pτ (θ, t) > 0). Then, it would violate the fact that

supp e1 is belief-closed, a contradiction. Given that supp (τ \ e1) is a belief-closed

subset of supp τ and τ is consistent, τ \ e1 is itself consistent under

pτ\e1(θ, t) :=
pτ (θ, t)

τ(supp (τ \ e1))

for all θ and t ∈ supp (τ \ e1). This follows immediately from the conditions that

pτ (θ, t) = β∗i (θ, t−i|ti)τi(ti) for all θ, t and i, margTpτ = τ , and the definition of belief-

closedness. Therefore, we can reiterate the procedure from the beginning and apply

it to τ\e1. After `− 1 steps, we obtain the consistent belief-hierarchy distributions

τ\{e1, . . . , e`−1}. Since τ has finite support, there must be ` large enough such that

τ\{e1, . . . , e`−1} is minimal; when it happens, denote e` := τ\{e1, . . . , e`−1}. We
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conclude that

τ =
∑̀
i=1

τ(supp ei)ei

where τ(supp ei) ≥ 0 and
∑`

i=1 τ(supp ei) = τ(∪`i=1ei) = τ(supp τ) = 1.

Now, we prove linearity of w. The point is to show that the set of outcomes of a

mixture of subspaces of the universal type space can be written as a similar mixture

of the sets of outcomes of these respective subspaces.

Lemma 3. The function w is linear over CM .

Proof. Let τ ′, τ ′′ ∈ CM and α ∈ [0, 1]. Define τ = ατ ′ + (1 − α)τ ′′. Proposition 3

shows linearity of OΣ∗ , so we have

w(τ) =
∑
θ,a

g(OΣ∗(τ))[θ, a]v(a, θ)

=
∑
θ,a

f
(
αOΣ∗(τ

′) + (1− α)OΣ∗(τ
′′)
)

[θ, a]v(a, θ)

Since g is linear, this becomes

α
∑
θ,a

f
(
OΣ∗(τ

′)
)
[θ, a]v(a, θ) + (1− α)

∑
θ,a

f
(
OΣ∗(τ

′′)
)
[θ, a]v(a, θ)

= αw(τ ′) + (1− α)w(τ ′′),

which completes the proof.

Proof of Theorem 1. Fix a prior µ0 ∈ ∆(Θ) and take any information structure

(S, π). From Proposition 1, it follows that (S, π) induces a consistent belief-hierarchy

distribution τ ∈ C such that margΘ pτ = µ0. By definition of Σ∗ and w, we have

V (S, π) = w(τ) and, thus, sup(S,π) V (S, π) ≤ sup{w(τ)|τ ∈ C and margΘpτ = µ0}.
Now, take τ ∈ C such that margΘ pτ = µ0. By Proposition 1, we know that there

exists an information structure (S, π) that induces τ and such that V (S, π) = w(τ).

Therefore, sup(S,π) V (S, π) ≥ sup{w(τ)|τ ∈ C and margΘ pτ = µ0}. We conclude

that

sup
(S,π)

V (S, π) = sup
τ∈C

margΘ pτ=µ0

w(τ). (23)

By Proposition 5, there exists a unique λ ∈ ∆f (CM) such that τ =
∑

e∈supp λ λ(e)e.

Since p and marg are linear,

margΘpτ = margΘp
∑
e λ(e)e =

∑
e∈supp λ

λ(e)margΘpe.
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Then, by Lemma 3 and (23), we have

sup
(S,π)

V (S, π) = sup
λ∈∆f (CM)

∑
e

w(e)λ(e)

subject to
∑
e

margΘpe λ(e) = µ0,
(24)

which concludes the proof.

D. Investment Game

Consider a 2 × 2 minimal distribution of the form presented on p.12. To leverage

second-order beliefs, we need to choose µ′′1 = µ′′2 = 2
3
+ε. Moreover, 1−A−B−C = 0

because each player i already invests at (µ′′i , λ
′′
i ) based on his first-order beliefs alone.

Additionally, symmetry is without loss due to the symmetry of the game and the

objective. Hence, the relevant minimal distributions must be of the form:

e∗µ (µ′2, λ
′
2) (µ′′2, λ

′′
2)

(µ′1, λ
′
1) A 1−A

2

(µ′′2, λ
′′
1) 1−A

2
0

where A ∈ [0, 1]. Next, we characterize consistency. The Bayes plausibility (BP)

condition requires that

1 + A

2
· µ′ + 1− A

2
·
(

2

3
+ ε

)
= µ. (25)

Use first-order beliefs to designate the hierarchies (call this a player’s type) and

parameterize second-order beliefs as

λi(θ = 2, µ′|µ′) = µ′ − x
λi(θ = −1, µ′|µ′) = 1− µ′ − y
λi(θ = 2, µ′′|µ′) = x

λi(θ = −1, µ′′|µ′) = y

λi(θ = 2, µ′|µ′′) = 2/3 + ε

λi(θ = −1, µ′|µ′′) = 1/3− ε
λi(θ = 2, µ′′|µ′′) = 0

λi(θ = −1, µ′′|µ′′) = 0

for a player of type µ′ and µ′′ = 2/3 + ε, respectively. Consistency requires that

λ1(θ, t2|t1)τ(t1) = λ2(θ, t1|t2)τ(t2)

for all (θ, t1, t2). This gives x =
(

2
3

+ ε
)
· 1−A

1+A
and y =

(
1
3
− ε
)
· 1−A

1+A
. It remains

to make sure that all second-order beliefs are in [0, 1]. This requires µ′ ≥ x and

y ≤ 1− µ′, pinning down µ′:

µ′ =

(
2

3
+ ε

)
· 1− A

1 + A
. (26)

Substituting this into (25), we obtain A = 1− 3µ
2+3ε

and µ′ = (2+3ε)µ
4−3µ+6ε

. Hence,
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e∗µ µ′ = (2+3ε)µ
4−3µ+6ε

µ′′ = 2/3 + ε

µ′ = (2+3ε)µ
4−3µ+6ε

1− 3µ
2+3ε

3µ
4+6ε

µ′′ = 2/3 + ε 3µ
4+6ε

0

is the minimal distribution that will ensure joint investment for the smallest prior.

To compute that smallest prior, write down the condition that ensures investment

for each type. When a player is of type 2/3 + ε, investment is guaranteed. When a

player’s type is type µ′, he invests if:

3µ′ + (x+ y)− 2 > 0 (27)

which implies
1− A
1 + A

> 2− 3µ′. (28)

By (26) and (28), we get µ > 8+12ε
15+9ε

≈ 8
15

. Therefore, for all µ > 8/15, e∗µ ensures

both players invest with probability one.

E. Manager’s Problem

Proposition 6. A belief-hierarchy distribution η ∈ A is consistent if and only if

η(µ1, λ2) = η2(λ2)λ2(µ1) for all (µ1, λ2) ∈ supp η.

Proof. (“only if”) Let η be consistent. By (6), there is pη ∈ ∆f (Θ × ∆Θ × ∆∆Θ)

such that

marg(µ1,λ2)pη(µ1, λ2, θ) = η(µ1, λ2) (29)

for all (µ1, λ2) ∈ supp η. By consistency and definition of λ2,

λ2(µ1) =

∑
θ pη(θ, µ1, λ2)

η2(λ2)

and, therefore,

η(µ1, λ2) =
∑
θ

pη(θ, µ1, λ2) = η2(λ2)λ2(µ1)

for all µ1 ∈ supp(η1) and λ2 ∈ supp(η2), where the first equality follows by (29)

and the second by the definition of λ2.

(“if”) Take any η ∈ A and define pη as

pη(µ1, λ2, θ) := µ0(θ)
η1(µ1)µ1(θ)

µ0(θ)

η2(λ2)λ2(µ1)

η1(µ1)
= µ1(θ)η2(λ2)λ2(µ1). (30)

Therefore, marg(µ1,λ2)pη(µ1, λ2, θ) = η(µ1, λ2) by the condition of the proposition.

Furthermore, it is easy to check that pη(θ|µ1) = µ1(θ) and pη(µ1|λ2) = λ2(µ1), that
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is, the first- and second-order beliefs (respectively, of player 1 and 2) supported by

pη are obtained by Bayesian updating of pη, hence η is consistent.

Definition 2. Let pη be defined as in (30). A distribution τ ∈ C induces η ∈ A if

for all (µ1, λ2, θ)

pη(µ1, λ2, θ) =
∑

t1:β∗1 (θ|t1)=µ1(θ)
t2:β∗2 ({t1:margΘβ

∗
1 (·|t1)=µ1}|t2)=λ2(µ1)

pτ (t1, t2, θ).

Definition 3. For any η ∈ A, BNE(η) consists of all σ = (σ1(·|µ1), σ2(·|λ2)) such

that

suppσ1(·|µ1) ⊆ argmaxa1

∑
θ

u1(a1, θ)µ1(θ)

for all µ1 ∈ supp η1, and

suppσ2(·|λ2) ⊆ argmaxa2

∑
a1,µ1

u2(σ1(a1|µ1), a2)λ2(µ1)

for all µ2 ∈ supp η2.

We show next that, as far as distributions over equilibrium action profiles are

concerned, we can work with distributions in A only. Define the set of action

distributions under solution concept Σ to be

OA
Σ(τ) = {γA ∈ ∆(A) : ∃γ ∈ OΣ(τ) s.t. margAγ = γA}.

Recall that, from Proposition 4, OA
BCEB

(τ) captures all BNE distributions (over

action profiles in 〈G, (S, π)〉 of all information structures.

Proposition 7. If τ induces η, then OA
BCEB

(τ) = OA
BNE(η).

Proof. In the game between P and W, BCEB(τ) requires for any τ that for all

t1 ∈ T1, a1, a
′
1 ∈ A1,∑

a2,t2,θ

pτ (t, θ)σ(a1, a2|t1, t2, θ)(u1(a1, θ)− u1(a′1, θ))

= σ1(a1|t1)
∑
θ

pτ (t1, θ)(u1(a1, θ)− u1(a′1, θ)) ≥ 0

where we have used that
∑

a2
σ(a1, a2|t1, t2, θ) = σ1(a1|t1) since σ is belief-preserving.

Dividing both sides by σ1(a1|t1)τ(t1) and substituting in β∗1(θ|t1) = pτ (t1, θ)/τ(t1),

we obtain ∑
θ

β∗1(θ|t1)(u1(a1, θ)− u1(a′1, θ)) ≥ 0
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for all t1. Since for all t1 ∈ T1, margΘβ
∗
1(·|t1) = µ1 for some µ1 ∈ ∆Θ, we can write

suppσ1(·|µ1) ⊆ argmaxa1

∑
θ

u1(a1, θ)µ1(θ).

This conclusion also implies that σ(a1|a2, t1, t2, θ) = σ1(a1|t1) for all (a, t) ∈ A× T .

Therefore, σ(a1, a2|t1, t2, θ) = σ1(a1|t1)σ(a2|t1, t2, θ). Summing across all a1 ∈ A1 we

get: ∑
a1

σ(a1, a2|t1, t2, θ) = σ(a2|t1, t2, θ) = σ2(a2|t1, t2, θ) = σ2(a2|t2)

where the last equality follows from the belief-preserving property of σ. Given

σ(a1, a2|t1, t2, θ) = σ1(a1|t1)σ2(a2|t2), BCEB(τ) requires that for all t2 ∈ T2, a2, a
′
2 ∈

A2,

σ2(a2|t2)
∑
a1,t1

pτ (t1, t2)σ1(a1|t1)(u2(a1, a2)− u2(a1, a
′
2)) ≥ 0. (31)

Since player 1’s strategy is a function of µ1, σ1(a1|µ1), 2 formulates beliefs

β∗2(µ1|t2) := β∗2({t1 : margΘβ
∗
1(·|t1) = µ1}|t2)

=
pτ ({t1 : margΘβ

∗
1(·|t1) = µ1}, t2)

τ(t2)
.

Dividing (31) by σ2(a2|t2)τ(t2) and substituting in σ1(a1|µ1) and β∗2(µ1|t2) give∑
a1,µ1

β∗2(µ1|t2)σ1(a1|µ1)(u2(a1, a2)− u2(a1, a
′
2)) ≥ 0

for all t2 ∈ T2, a2, a
′
2 ∈ A2. For all t2 ∈ T2, there is λ2 ∈ ∆∆Θ such that

β∗2(·|t2) = λ2, and so we can write

suppσ2(·|λ2) ⊆ argmaxa2

∑
a1,µ1

u2(σ1(a1|µ1), a2)λ2(µ1)

for all λ2. Hence, (σ1(·|µ1), σ2(·|λ2)) ∈ BNE(η). The equilibrium distribution over

action profiles is given by

ση(a1, a2) =
∑
µ1,λ2,θ

pη(µ1, λ2, θ)σ1(a1|µ1)σ2(a2|λ2)

=
∑
µ1,λ2,θ

∑
t1:β∗1 (θ|t1)=µ1(θ)

t2:β∗2 ({t1:margΘβ
∗
1 (·|t1)=µ1}|t2)=λ2(µ1)

pτ (t1, t2, θ)σ1(a1|t1)σ2(a2|t2)

=
∑
t1,t2,θ

pτ (t1, t2, θ)σ1(a1|t1)σ2(a2|t2)

= στ (a1, a2),

where we have used that τ induces η and the established equivalence between the

σi’s. Hence, OA
BCEB

(τ) = OA
BNE(η).
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F. On Minimal Consistent Distributions

Proposition 8.

(i) Suppose that τ ∈ C is conditionally independent. If µ = margΘpτ is not degen-

erate, then τ is minimal iff it is not perfectly informative. If µ is degenerate,

then τ is minimal.

(ii) A public τ ∈ C is minimal iff supp τ is a singleton.

Proof. Part (i). Suppose that τ is conditionally independent and µ is non-degenerate.

First, if τ is perfectly informative, then it can be written

τ =
∑
θ

µ(θ)τθ,

where τθ is a distribution that gives probability 1 to belief hierarchies representing

common knowledge that θ has realized. Given µ(θ) ∈ (0, 1), τ is therefore a convex

combination of belief-hierarchy distributions, hence it is not minimal.

Second, we show that if τ is non-minimal, then it must be perfectly informative.

Let τ be non-minimal. By Lemma 2, there exist α ∈ (0, 1) and τ ′ 6= τ ′′ such that

τ = ατ ′ + (1 − α)τ ′′. Without loss, we can assume supp τ ′ ∩ supp τ ′′ = ∅. If this

were not the case, we could find a consistent τ ∗ with supp τ ∗ = supp τ ′ ∩ supp τ ′′,

in which case τ could be written as

τ = κτ ∗ + (1− κ)τ̂

where κ = αq + (1− α)r, q = τ ′(supp τ ∗), r = τ ′′(supp τ ∗) and20

τ̂ =
α(1− q)

1− κ
(τ ′ \ τ ∗) +

(1− α)(1− q)
1− κ

(τ ′′ \ τ ∗).

Now, take t′ ∈ supp τ ′, t′′ ∈ supp τ ′′ and note

pτ (t
′
i, t
′′
−i|θ) = αpτ ′(t

′
i, t
′′
−i|θ) + (1− α)pτ ′′(t

′
i, t
′′
−i|θ) = 0 (32)

for all θ and i. If τ were conditionally independent,

pτ (t
′
i, t
′′
−i|θ)

= pτ (t
′
i|θ)
∏
j 6=ipτ (t

′′
j |θ)

= (αpτ ′(t
′
i|θ) + (1− α)pτ ′′(t

′
i|θ))

∏
j 6=i
(
αpτ ′(t

′′
j |θ) + (1− α)pτ ′′(t

′′
j |θ)
)
,

20For any τ, τ ′ ∈ C such that supp τ ∩ supp τ ′ 6= ∅, we write τ\τ ′ to designate the unique
consistent belief-hierarchy distribution with support supp τ ∩ supp τ ′.
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which is strictly positive for some θ when τ is not perfectly informative, and thus

contradicts (32). This implies that a non-minimal conditionally independent τ must

be perfectly informative.

Part (ii). If τ is public, then every {t} such that t ∈ supp τ is a consistent

distribution. Therefore, if supp τ is a singleton, then it is clearly minimal. But

if supp τ is not a singleton, then τ is a convex combination of multiple consistent

distribution, in which case τ is not minimal.

Let Cµ := {τ ∈ C : margΘpτ = µ} be the set of consistent distributions with

posterior µ ∈ ∆Θ and let Eµ := Cµ ∩ CM denote the minimal ones among those.

We next show that Eµ is dense in Cµ, although CM is small in a measure-theoretic

sense relative to C. Since there is no analog of the Lebesgue measure in infinite

dimensional spaces, we use the notion of finite shyness proposed by Anderson and

Zame (2001), which captures the idea of Lebesgue measure 0.

Definition 4. A measurable subset A of a convex subset C of a vector space S
is finitely shy if there exists a finite dimensional vector space V ⊆ S for which

λV (C + s) > 0 for some s ∈ S, and λV (A + s) = 0 for all s ∈ S, where λV is the

Lebesgue measure defined on V .

Proposition 9. CM is finitely shy in C.

Proof. By Lemma 1, C is a convex subset of the vector space S of all signed measures

on T . Choose any distinct e, e′ ∈ CM and let V = {α(e − e′) : α ∈ R} ⊆ S. By

construction, V is a one-dimensional subspace of S. Let λV ∈ ∆V represent the

Lebesgue measure on V . Notice that α(e− e′) = αe + (1− α)e′ − s for s := e′ and

that (C − s) ∩ V = {α(e− e′) : α ∈ [0, 1]} by convexity of C. Hence, λV (C − s) > 0.

However, since CM is the set of extreme points of C, for every s ∈ S, (CM − s) ∩ V
contains at most two points. This gives λV (CM − s) = 0, since points have Lebesgue

measure zero in V .

Proposition 10. Let Σ be BNE and suppose that the selection criterion is max.

For any minimal belief-hierarchy distribution e ∈ CM, there is an environment 〈v,G〉
for which λ∗ = δe is the essentially unique optimal solution.21

Proof. Fix e ∈ CM , ε > 0 and let µ0 = pe. Denote by Gε(e) = (N, {Ai, ui}) the

(base) game defined in Chen et al. (2010)’s Lemma 1 where Ai ⊇ supp ei. In this

21The proof establishes the stronger claim with Σ := ICR by using a result from Chen et al.
(2010). A minimal distribution e is the essentially unique optimal solution if for all ε > 0, there
is a game Gε such that all τ ∈ C with d(e, τ) > ε are strictly suboptimal (the metric is defined in
(33)). By choosing a constant game or a constant designer’s utility, it is easy to make all minimal
distributions optimal, since the designer is indifferent among them. Uniqueness makes the result
much stronger.
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game, player i’s actions include belief hierarchies from ei. The (base) game Gε(e) is

so conceived that, in the Bayesian game (Gε(e), e), every player has a strict incentive

to truthfully report his true belief hierarchy, but for any τ that is suitably distant

from e, some i in the Bayesian game (Gε(e), τ) has a strict incentive not to report

any ti ∈ supp ei. For any i and ti, t
′
i ∈ Ti, let

di(ti, t
′
i) := sup

k≥1
dk(ti, t

′
i)

where dk is the standard metric (over k-order beliefs) that metrizes the topology

of weak convergence. Let Ri and R be the ICR actions and profiles. Lemma 1 and

Proposition 3 from Chen et al. (2010) imply that for every i and ti ∈ supp ei,

ti ∈ argmax
ai∈Ai

∑
θ

∑
t−i∈supp e−i

ui(ai, t−i, θ)β
∗
i (θ, t−i|ti)

and for every τ ∈ C such that

d(e, τ) := max
i
dHi (supp ei, supp τi) ≥ ε, (33)

where dHi is the standard Hausdorff metric, there exist i and t′i ∈ supp τi such that

supp ei ∩ Ri(t
′
i) = ∅. To see why, note that since e is minimal, there can be no

sequence (τn) ⊆ C such that d(e, τn) ≥ ε for all n, while

max
i

max
ti∈supp τn,i

min
t′i∈supp ei

di(ti, t
′
i)→ 0. (34)

That is, for all τ such that d(e, τ) ≥ ε, there is δ > 0 such that

max
i

max
ti∈supp τn,i

min
t′i∈supp ei

di(ti, t
′
i) ≥ δ. (35)

Put differently, there exist i and t′i ∈ supp τi such that di(ti, t
′
i) ≥ δ > 0 for all

ti ∈ supp ei. From (the proof of) Proposition 3 in Chen et al. (2010), we conclude

that supp ei ∩ Rk(t′i) = ∅ for some k. Given that Ri(t
′
i) = ∩∞k=1R

k
i (t
′
i), we have

supp ei ∩ Ri(t
′
i) = ∅. Now, define the designer’s utility as v(a) := 1(a ∈ supp e) for

all a ∈ A. Then, the designer’s expected payoff is

w(τ) =


1 if τ = e,

x if d(e, τ) < ε,

y if d(e, τ) ≥ ε

where x ≤ 1 and y < 1. When d(e, τ) < ε, it is not excluded that x = 1, because all

of supp τ , by virtue of being close to some hierarchy in supp e, might report only in

supp e. However, whenever d(e, τ) ≥ ε, there is a hierarchy profile t occurring with

positive probability that reports outside supp e. Thus, the designer maximizes her

expected payoff by setting λ∗ = δe, which is Bayes-plausible since µ0 = pe.
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Proof of Proposition 2. Let τ ∈ Cµ. We want to find a sequence (τε) ⊆ Eµ such

that τε
w−→ τ . If τ ∈ Eµ, the proof is obvious. So, suppose τ /∈ Eµ. To construct

(τε), we work first in the space of information structures and then return to C. Let

(S, π) be the information structure that induces τ such that S := supp τ (see (16)

for example). Pick an arbitrary probability measure ξ ∈ ∆S with full support, and

mix π with ξ in the following way:

πε(T̂ |θ) := (1− ε) π(T̂ |θ) + ε ξ(T̂ )

for all T̂ ⊆ S and all θ. Now consider the corresponding sequence (τε) ⊆ C of

induced belief-hierarchy distributions. Since prior µ has been fixed, (τε) ⊆ Cµ.

By construction, πε → π implies τε
w−→ τ . We are left to show that (τε) ⊆ Eµ.

Pick any τε and let Sε := supp τε. Consider any S ′ ( Sε and suppose by way of

contradiction that it is belief-closed. That is, there exist i and a hierarchy ti ∈ S ′i
such that β∗i (Θ × {t−i : (ti, t−i) ∈ S ′} | ti) = 1. This implies that player i knows

(ti, t̄−i) ∈ Sε \ S ′ cannot realize. This contradicts the fact that ξ has full support.

Thus, τε ∈ Eµ.

To prove that Cµ\Eµ is dense in Cµ, fix any τ ∈ Cµ, so that either τ ∈ Cµ\Eµ and

the result follows trivially or τ = e ∈ Eµ. In the latter, choose τ ′ ∈ Cµ such that

supp τ ′ 6= supp e. Then define τ ε = ετ ′+ (1− ε)e for ε ∈ (0, 1) and note τ ε ∈ Cµ\Eµ
for all ε. Clearly, τ ε

w−→ e, hence τ = e is in the closure of Cµ\Eµ.
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