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Designing stable mechanisms for economic environments
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We study the design of mechanisms that implement Lindahl or Walrasian alloca-
tions and whose Nash equilibria are dynamically stable for a wide class of adaptive
dynamics. We argue that supermodularity is not a desirable stability criterion in
this mechanism design context, focusing instead on contractive mechanisms. We
provide necessary and sufÞcient conditions for a mechanism to Nash-implement
Lindahl or Walrasian allocations, show that these conditions are inconsistent with
the contraction property when message spaces are one-dimensional, and then
show how to use additional dimensions to achieve dynamic stability while gaining
budget balance out of equilibrium.
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1. I

It is well known that equilibrium outcomes are inefÞcient in economies with pub-
lic goods when contributions are voluntary. The mechanism design literature pro-
vides various incentive schemes that solve these inefÞciencies, assuming agents select
equilibrium strategies when playing a mechanism. Historically, the general impossi-
bility results when applying the weak requirement of dominant strategy equilibrium
(Gibbard 1973, Satterthwaite 1975, Hurwicz and Walker 1990 , Zhou 1991) led to the
search for mechanisms that implement optimal public-goods allocations when players
are assumed to select Nash equilibrium strategies. Groves and Ledyard (1977), Hurwicz
(1979b), and Walker (1981), among others, all provide examples of such mechanisms.
From a theoretical standpoint, these mechanisms completely solve the free-rider prob-
lem in public-goods economies.

Early laboratory tests, however, revealed that the empirical success of these mecha-
nisms was limited because agents in fact do not play equilibrium strategies; rather, the
play of these mechanisms can best be described using myopic learning dynamics, such
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as best-response play to a recent history of actions ( Chen and Plott 1996 , Chen and Tang
1998, Chen and Gazzale 2004, Healy 2006). Thus, mechanisms that induce dynamically
stable games drive play to equilibrium, while mechanisms that induce unstable games
do not. These Òwind tunnelÓ tests suggest that theorists should add dynamic stability to
the constraints of the mechanism design problem and focus on implementing optimal
allocations in stable Nash equilibria.

In this paper, we take the next step, incorporating these experimental observations
about stability back into the theory. We provide example mechanisms that are not only
stable, but also budget-balanced both in and out of equilibrium. Budget balance out of
equilibrium is vital when discussing dynamic stability, as it ensures that allocations are
still feasible when play has not yet converged. We focus on Lindahl equilibrium allo-
cations as our objective function for implementation in public-goods economies, and
we extend our results to Walrasian equilibria when all goods are private. We also show
how our mechanisms are constructed and we discuss the limitations of our procedure.
SpeciÞcally, our paper proceeds in four steps.

1. After introducing the basic environment and notation, we provide our notion of
dynamic stability: contractive mechanisms. A mechanism is contractive if, in ev-
ery possible environment, it induces a game whose best-response functions are
contraction mappings. We prove that a large family of learning dynamics is glob-
ally stable in contractive games ( Theorem 1) and point out that the family of con-
vergent dynamics is even larger if utilities are concave in oneÕs own strategy. The
result for contractive games is an analog of the Milgrom and Roberts (1990) sta-
bility result for supermodular games. We also argue that supermodularityÑwhich
has been suggested previously as a desirable stability notionÑmay not guarantee
stability in mechanism design settings. This motivates our search for contractive
mechanisms.

2. Assuming quasilinear preferences, we provide an example mechanism that fully
implements Lindahl allocations, is contractive, gives concave utilities, and is bud-
get balanced both in and out of equilibrium ( Theorem 2). We also provide a con-
tractive and budget-balanced mechanism with concave utilities that fully imple-
ments Walrasian allocations in private-goods economies ( Theorem 3). Quasilin-
earity cannot be relaxed too far; the results of Jordan (1986) and Kim (1987) guar-
antee that no (well behaved) mechanism can be stable for general preferences.

3. Next, we show how such mechanisms are constructed. Ignoring all stability con-
cerns and relaxing quasilinearity, we provide necessary and sufÞcient conditions
for continuous mechanisms to fully implement Lindahl or Walrasian allocations in
Nash equilibrium (Theorems 4, 5, and 7). These results provide an understand-
ing of what types of mechanisms can be considered for implementation and how
desiderata such as stability can then be added. As an example of the restrictiveness
of the necessary and sufÞcient conditions, we prove that if a mechanism has a one-
dimensional strategy space for each player, then it cannot fully implement Lindahl
(or Walrasian) allocations and be contractive ( Theorem 6). This explains the neces-
sity of using two-dimensional message spaces in our example mechanisms.
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4. Finally, we discuss the limitations and possible generalizations of our approach.
For example, contractive mechanisms for more than two goods can be constructed,
but rely on strong assumptions about complementarities. Additionally, no mecha-
nism can be contractive if concavity of preferences becomes arbitrarily small.

Relative to the existing literature, our necessary and sufÞcient conditions for Nash-
implementing Lindahl or Walrasian allocations (ignoring stability concerns) provide a
new understanding about the types of mechanisms that can be used in general equi-
librium (or ÒeconomicÓ) environments. 1 With one-dimensional message spaces, the
necessary condition is quite strong: AgentsÕ announcements must represent individual
purchases of the non-numeraire good at prices determined by othersÕ messages. Thus,
in the public-goods setting, the choice of announcement is equivalent to the choice of
the public-goods level, taking prices as given. In this way, the mechanism must parallel
the consumerÕs optimization problem given in the very deÞnitions of Walrasian and Lin-
dahl equilibrium. SufÞciency is obtained by assuming, in addition, that every possible
Lindahl or Walrasian allocation can be reached by some announcement. 2

The motivation for requiring dynamic stability in mechanism design is manifold.
First and foremost, this paper continues the dialog between theory and data that hope-
fully will converge on acceptable mechanisms for real-world application. To aid in the
continuation of this dialog, we provide a recipe for designing stable mechanisms. New
ingredients can be added as new behavioral regularities are discovered. In contrast, a
single example of a stable mechanism is less desirable because these new behavioral
regularities may render that particular mechanism ineffective.

Dynamic stability of equilibrium also has appeal independent from the existing ex-
perimental results. If equilibrium is arrived at through iterated applications of best re-
sponse in playersÕ internal logic or through iterations of pre-play communication, then
stable equilibria are the most likely to arise and are the most robust to perturbations in
opponentsÕ logic or pre-play communication. Thus, we also view stability as a device to
make static Nash implementation more robust.

It is important to study stability under a wide class of admissible dynamics be-
cause experimental evidence suggests that the process of learning can vary dramatically
from one environment to another. Existing work on economic environments by Vega-
Redondo (1989), de Trenqualye (1989), and Kim (1993, 1996), for example, focuses on
particular learning dynamics that may or may not be descriptive in various settings. In

1We borrow the phrase Òeconomic environmentÓ from HurwiczÕs early work on mechanism design.
Hurwicz and Reiter (2006, p. 14) describe economic environments as those concerned with production,
consumption, and exchange. SpeciÞcally, an economic environment speciÞes the constraints on those
three activities. These are typically a special case of the more general Òsocial choiceÓ environments studied
by Arrow (1951) or Maskin (1999), for example.

2Our necessary condition was Þrst suggested by Brock (1980) (see alsoGroves and Ledyard 1987), though
not proved generally. Reichelstein and Reiter (1988) use differential geometry techniques to explore the
minimal message space size needed for Walrasian implementation in Nash equilibrium. Their proof tech-
nique also suggests that Òprice-takingÓ is a necessary condition. We describe and prove this claim in a much
more straightforward way, extend it to public-goods economies, and add sufÞciency results that lead to a
useful characterization of implementing mechanisms.
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contrast, Chen (2002) develops a public-goods mechanism that is supermodular, fol-
lowing Milgrom and Roberts Õs (1990) result that supermodular games have dynamically
stable equilibrium sets for a wide class of dynamics. 3

We argue in Section 3 that supermodularity is not an appropriate stability concept
for mechanism design in certain contexts. Milgrom and Roberts (1990) prove that if a
game is supermodular, then any adaptive learning dynamic (which plays undominated
strategies against not too distant histories) must converge to the smallest interval con-
taining all Nash equilibria. But now imagine a supermodular game with Nash equilibria
at the corners of the (compact) strategy space. The MilgromÐRoberts stability result is
vacuous here since the smallest interval containing all equilibria is the entire strategy
space. If, as in the current mechanism design literature, we make the strategy space
unbounded, then the corner equilibria are eliminated, but nothing guarantees that the
remaining interior equilibria are stable. Thus, supermodularityÕs stability properties can
be highly ambiguous when the strategy space is unbounded or when little is known
about the size of the equilibrium set.

Instead of requiring supermodularity, we design mechanisms with contractive best-
response functions. We prove that this guarantees stability for many learning dynamics.
Our example mechanisms are also fully budget-balanced. Requiring that mechanisms
satisfy budget balance out of equilibrium is vitally important when admitting dynamic
adjustment processes. If allocations are not balanced out of equilibrium, then the social
planner will be required to fund the surplus (or absorb the shortage) in early periods
when play has not yet converged. There is no guarantee that early surpluses are offset
by later shortages, and the total subsidy required across time may vary greatly depend-
ing on the initial conditions and exact path of play. Practical applications, therefore,
demand balanced budgets.

Requiring full implementationÑwhere every equilibrium maps to a desirable out-
come, and vice versaÑis also important in a dynamic context, because it guarantees
that agents do not settle on equilibria whose outcomes are not desirable. By dealing
with full implementation, our paper presents an advantage over Mathevet (2010), who
builds supermodular mechanisms in Bayesian environments but focuses on weak im-
plementation and minimizing the size of the equilibrium set.

The structure of the paper is as follows: We review related literature in the following
subsection. We introduce a two-good general-equilibrium model and the basic deÞni-
tions of implementation in Section 2. In Section 3, we introduce contractiveness as our
stability notion and discuss some of the dangers of focusing instead on supermodular-
ity. We then provide two contractive, budget-balanced mechanisms: one for Lindahl
allocations and one for Walrasian allocations. We provide necessary and sufÞcient con-
ditions for a mechanism to implement Lindahl or Walrasian allocations in Section 4.
We Þrst study the case of mechanisms with one-dimensional strategy spaces for each
agent, show that no one-dimensional mechanism that satisÞes these conditions can be
contractive, and then generalize the necessary and sufÞcient conditions to higher di-
mensional mechanisms. This provides an understanding of how our two mechanisms

3Technically, ChenÕs (2002) mechanism is open-supermodular since its strategy space is not compact;
seeSection 3.
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are constructed and how other, similar mechanisms can be constructed. Finally, in Sec-
tion 5, we discuss how our results can generalize to economies with multiple nonnu-
meraire goods, why it is difficult to relax our assumption of quasilinearity, and what
future directions (and limitations) we foresee for this line of research.

Related literature

We focus attention on Nash implementation in economic environments, where the
problem of stability is relatively longstanding. The first (and most well known) fully
optimal public-goods mechanism is that of Groves and Ledyard (1977). Muench and
Walker (1983) show that as an economy becomes large, the Groves–Ledyard mechanism
either becomes highly unstable (in best-response dynamics) if the punishment parame-
ter remains small or payoffs become arbitrarily “flat” if the punishment parameter grows
large; in either case, attainability of equilibrium becomes a concern. If preferences are
not quasilinear, then the Groves–Ledyard mechanism may have many undesirable equi-
libria (Bergstrom et al. 1983); however, these equilibria may not be a concern since they
are unstable and disappear when the punishment parameter is sufficiently large (Page
and Tassier 2004). Chen and Tang (1998) show that the mechanism also becomes super-
modular in quasilinear environments with a large punishment parameter, though the
critical requirement of a compact strategy space for supermodular games is omitted,
leading to ambiguous predictions about stability.4

Regardless of its stability properties, a major drawback of the Groves–Ledyard mech-
anism is that it is not individually rational: Agents’ final utility may be lower than that of
their initial endowments. Hurwicz (1979a) proves that, under a mild continuity require-
ment, if one wants to implement Pareto optimal and individually rational outcomes in
economic settings, then one must implement the Walrasian or Lindahl equilibrium al-
locations. From this view, the mechanisms of Hurwicz (1979b) and Walker (1981) that
Nash-implement Lindahl allocations are preferable; we refer to such mechanisms as
NashÐLindahl mechanisms.

Unfortunately, the Nash–Lindahl mechanisms of Hurwicz and Walker are known to
have poor stability properties, and experimental results (Chen and Tang 1998, Healy
2006) confirm that this severely hinders performance. Kim (1987) (following Jordan
1986) shows that for a certain class of preferences, all Nash–Lindahl mechanisms must
be unstable for at least one preference profile in the class. As mentioned above, Vega-
Redondo (1989), de Trenqualye (1989), and Kim (1993, 1996) all design Nash–Lindahl
mechanisms that are stable for particular dynamics under various restrictions on pref-
erences. The Kim and Jordan results also force us to restrict preferences in this paper;
our stability results are proven assuming quasilinear preferences for the public good.
Stability results for completely general preferences are impossible.

The first carefully controlled laboratory experiments of Nash–Lindahl mechanisms
were performed by Chen and Plott (1996).5 The subsequent experimental research

4We refer to such games as open-supermodular.
5Scherr and Babb (1975), Smith (1979), Harstad and Marrese (1982), and Tideman (1983) ran earlier ex-

periments and many authors tested inefficient public-goods processes such as the voluntary contributions
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(Chen and Tang 1998, Chen and Gazzale 2004, Healy 2006) has suggested that super-
modularity is a sufÞcient (if not necessary) condition for subjects to converge to Nash
equilibrium. Supermodularity (following Milgrom and Roberts 1990 ) in this context re-
quires a compact strategy space and implies monotone best responses. Based on the
learning result from Milgrom and Roberts (1990), Chen (2002) provides a family of su-
permodular NashÐLindahl mechanisms, though their strategy spaces are not compact.

The closest work to ours is Van Essen(forthcoming ). He also notes that supermodu-
larity with unbounded strategy spaces does not imply stability and adopts the contrac-
tion approach as a ÒÞxÓ for this instability. He then provides an example mechanism that
is both supermodular and contractive. In this paper, we do not require supermodular-
ity since it adds unnecessary constraints to the problem; this is shown more formally
in Section 3. We also provide general characterization results for Nash implementa-
tion; prove that for a large class of learning dynamics, agentsÕ choices converge to the
Nash equilibrium in contractive games; demonstrate an impossibility result for stable
one-dimensional mechanisms; focus on a general ÒrecipeÓ for designing stable mecha-
nisms; provide a Walrasian mechanism; andÑmost importantlyÑdevelop mechanisms
that are budget-balanced out of equilibrium. Stable mechanisms that are not budget-
balanced may require signiÞcant subsidies (or generate large surpluses) while strategies
are adjusting toward equilibrium; our budget-balanced mechanisms never create a sub-
sidy or a surplus at any time, guaranteeing feasible outcomes in every period. The stable
mechanisms of Van Essen(forthcoming ) and Chen (2002) are not budget-balanced out
of equilibrium.

More recent experimental work on supermodular mechanisms suggests that the per-
formance of mechanisms out of equilibrium may dramatically affect realized efÞciency.
Van Essen et al. (2012) and Van Essen (2010) show that the Chen (2002) mechanism
is outperformed by the Kim (1993) and Van Essen(forthcoming ) mechanisms, respec-
tively, because the latter mechanisms give smaller out-of-equilibrium ÒpunishmentsÓ
and budget imbalances, resulting in higher overall efÞciency. These results highlight
the need for out-of-equilibrium budget balance, as well as the usefulness of providing a
general recipe for designing mechanisms that can take into account such lessons in the
design of future mechanisms.

There is comparatively little work on implementing Walrasian allocations, presum-
ably because decentralized markets generally perform well. Yet an alternative mecha-
nism may be desirable for several reasons. First, if the number of agents is small, then
the price-taking assumption becomes tenuous; a mechanism with a game-theoretic
foundation is more likely to succeed. Dynamic stability then guarantees that adaptively
adjusting agents can still arrive at the Walrasian allocations. Second, adaptive learning
models in the competitive mechanism focus on t‰tonnement-like adjustment processes
where stability is, in general, not guaranteed ( Scarf 1960, Hirota 1985 ) and where feasi-
bility (off-equilibrium) of the consumption plans is also a problem. We focus instead on
designing game-theoretic mechanisms that are fully balancedÑhence trades are feasi-
ble off-equilibriumÑand stable under a family of learning dynamics that is known to be

mechanism (see Ledyard 1995), but Chen and Plott (1996) were the Þrst to test directly a theoretically opti-
mal mechanism without modiÞcations in a controlled laboratory setting.
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reasonably descriptive. To our knowledge, the only other paper to focus on the design
of dynamically stable (approximate) Walrasian mechanisms is Walker (1984).

Various methods for generating stability directly through the solution concept have
also been studied. For example, dominant strategy equilibria are certainly dynamically
stable for nearly any reasonable learning process. Unfortunately, standard impossibil-
ity results severely limit its applicability ( Green and Laffont 1977 , Roberts 1979). Fur-
thermore, if the dominant strategy is not strict, then myopically adapting agents may
converge to undesirable Nash equilibria, as was observed in tests of the VickreyÐClarkeÐ
Groves mechanism by Cason et al. (2006) and Healy (2006) (see alsoSaijo et al. 2007).

Abreu and Matsushima (1992) provide a mechanism that has a dominance-solvable
equilibrium whose outcome is a lottery placing an arbitrarily large weight on the desired
allocation. From a theoretical standpoint, the result is very strong; it implies conver-
gence of a wide class of learning dynamics to the equilibrium point. Yet their mecha-
nism is of limited practical use: As the mechanism becomes more precise (placing more
weight on the desired allocation), the dimensionality of the message space diverges to
inÞnity. Furthermore, laboratory tests of the mechanism ( Sefton and Yavaüs 1996, in-
spired by Glazer and Rosenthal 1992) Þnd that subjects do not move toward the equilib-
rium over 14 periods of play. This suggests that the speed at which iterated dominance is
respected by learning is slow, or nonexistent. These results are in line with the Þndings of
McKelvey and Palfrey (1992), Stahl and Wilson (1995), Nagel (1995), and others, showing
that subjects do not appear to learn to play iteratively undominated strategies. These
results apparently limit the applicability of mechanisms that rely on iterated-deletion
solution concepts. 6

Sandholm (2002, 2005, 2007) studies stable Nash implementation of efÞcient re-
source utilization in congestion games. He uses transfers to convert externality prob-
lems with poor stability properties into potential games with excellent stability proper-
ties. In more general settings with continuous levels of public and private goods and
rich type spaces, however, it is typically not possible to use transfers to create a potential
game.

Cabrales (1999) shows that, in the canonical mechanism of Maskin (1999), adaptive
Markovian dynamics (placing positive probability on better responses to opponentsÕ
last-period strategies) converge to and remain at the Nash equilibrium. Cabrales and
Serrano (2011) extend this result, proving that a quasimonotonicity condition is nec-
essary for implementation in the steady states of these dynamics; when a no-worst-
alternative condition is also satisÞed, implementation can be achieved using a variation
on the canonical mechanism. Cabrales (1999) also shows that the AbreuÐMatsushima
mechanism is vulnerable to ÒdriftÓ when agents use adaptive Markovian dynamics, since
the equilibrium also admits nonequilibrium best responses for each agent.

6Bergemann and Morris (2011) consider rationalizable implementation, which is equivalent to iterated
deletion of strictly dominated strategies when the strategy space is Þnite. They show that virtual imple-
mentation in iteratively undominated strategies requires a social choice function to select agentsÕ favorite
social choice outcome when preferences are identical.
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2. T!" #$%"&

Economic environments

Consider a two-good general-equilibrium economy in which agents i ∈ {1! " " " !n} = I
have endowments ωi = (ωx

i !ω
y
i ) ∈ R2, make net trades zi = (x i !yi ) ∈ R2 − {ωi }, and

have preferences over net trades representable by a utility function ui (x i !yi |θi ) , where

θi ∈ %i identiÞes iÕs type drawn from iÕs type space%i .7 We assume that for each i and

θi , ui is increasing in xi (the numeraire good) for all yi and differentiable in both goods;

in our discussion of stability, we restrict attention to the special case of quasilinear pref-

erences where ui (x i !yi |θi ) = vi (yi |θi ) + xi . Let ω = (ω1! " " " !ωn), z = (z1! " " " !zn), and

θ = (θ1! " " " ! θn) ∈%=×i %i , and let p ∈ R represent the price of the nonnumeraire good,

normalizing the numeraire price to 1. A net trade vector z ∈ R2n is balanced if
!

i zi = 0.

Unlike most general-equilibrium models, ours does not restrict the feasible con-

sumption set to the positive orthant. Since no mechanism can Nash-implement Wal-

rasian or Lindahl equilibria when boundary equilibria are permitted (see Hurwicz 1979a

or Jackson 2001), it is necessary to rule out such equilibria, either by allowing un-

bounded consumption bundles or by restricting preferences so that boundary equilibria

never obtain. The latter approach is more common (see Groves and Ledyard 1977, for

example), but may be incompatible with our notion of dynamic stability.

As speciÞed, the model describes an exchange economy with purely private goods.

But we can easily reinterpret the model to allow the second good to be a purely public

good by making four changes: (1) every feasible net trade must be such that yi = yj for all

agents i and j , (2) ωy
i = ω

y
j for all i and j , (3) there is a single Þrm, capable of producing

y units of the public good from c(y) units of the numeraire, that aims to maximize the

proÞt function (
!

i p i )y − c(y), where each p i is the price paid by agent i , and (4) an

allocation is now said to be balanced if c(y) + !
i xi = 0. In this paper, we assume a

constant marginal cost of production κ > 0 so that c(y) = κy.

A Walrasian equilibrium of a private-goods economy at type vector θ is a net trade

vector z∗ and a price p ∗ such that z∗ is balanced and maximizes each ui (·! ·|θi ) subject

to the budget constraint yi p ∗ + xi ≤ 0. Here z∗ is referred to as a Walrasian equilibrium

allocation.

A Lindahl equilibrium of a public-goods economy is a net trade vector z∗ (the Lin-

dahl equilibrium allocation) and a vector of individual prices (p ∗
1! " " " !p ∗

n) such that z∗ is

balanced, maximizes each ui (·! ·|θi ) subject to the budget constraint yi p ∗
i + xi ≤ 0, and

maximizes the ÞrmÕs proÞt of (
!

i p ∗
i )y − c(y).

Note that Lindahl equilibria are of the same dimensionality as Walrasian equilib-

ria; the latter consists of 2n quantities and only one price, while the former has n + 1
quantities but needs n prices.

7In Section 5, we generalize our results to multiple goods in additive environments.
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Mechanisms and implementation

A social choice correspondencef : ! ! R2n maps type proÞles into sets of net trades. For
example, f might identify all Pareto optimal net trades for each " (the Pareto correspon-
dence), all Walrasian equilibrium allocations (the Walrasian correspondence), or, in a
public-goods setting, all Lindahl equilibrium allocations (the Lindahl correspondence).

A mechanism # = (M $h) consists of a message spaceM = ! i M i and an outcome
function h :M " R2n mapping each message proÞle m = (m1$%%%$mn) into a net trade
vector z. A mechanism # is also called a game form; when combined with a particular
type proÞle " , the mechanism induces a well speciÞed game with strategy spaces M i for
each i and utilities over strategy proÞles given by

Ui (m|" i ) := ui (h(m) |" i )%

We let

&i (m|" i ) = { mi # M i :Ui (mi $m$ i |" i ) %Ui (m&
i $m$ i |" i ) ' m&

i # M i }

represent iÕs best-response correspondence and deÞne& = (&1$%%%$&n). The Nash cor-
respondence' : ! ! M identiÞes the set of pure-strategy Nash equilibrium message pro-
Þles m( of # at each " ; formally, ' (" ) = { m # M :m # &(m|" )}. A mechanism (M $h) is
said to (Nash-) implement a social choice correspondence f if, for all " # ! ,

h( ' (" )) = f ( " )% (1)

We sometimes refer to ( 1) as full implementation; if h( ' (" )) ) f ( " ), we say that # weakly
Nash-implements f , and if h( ' (" )) * f ( " ) += ! , then # partially Nash-implements f .

In the case of economic environments with two goods, the outcome function h can
equivalently be written as a pair of functions of the form xi (m) and yi (m) for each i # I .
In this paper, we consider mechanisms for which M i ) RKi for some K i # {1$2$%%%} for
each i . When M i has Ji < K i dimensions that enter into the yi function and K i $ Ji di-
mensions that do not, then we may, for notationÕs sake, partition agent iÕs strategy space
into M i = R i ! Si with R i ) RJi and Si ) RKi $ Ji . Letting R = ! i R i and S = ! i Si , we
have that yi :R ! S$ i " R and xi :R ! S " R. In a public-goods setting, if the mecha-
nism generates only feasible allocations, then it must be that yi , y :R " R for each i
since yi = yj for all i += j .

Given any mechanism with functions yi (m) , it is without loss of generality that we
can express iÕs net trade of the numeraire as

xi (m) = $ qi (m$ i )yi (m) $ gi (m) $ (2)

so that the per-unit ÒpriceÓ term qi does not depend on mi . Thus, any mechanism can
be equivalently described by a list of functions of the form qi (m$ i ), gi (m) , and yi (m) for
each i . This formulation makes explicit the price and ÒpenaltyÓ components of xi (m) .
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3. S!"#$% &%'(")*+&+

Contractiveness as a notion of stability

There are many possible notions of stability that one could apply when designing a
mechanism. We focus here on contractive mechanisms whose best-response functions
are, in every type proÞle ! , contraction mappings. 8 Formally, if (M " d) is a complete
metric space with metric d, then a (single-valued) function # :M ! M is a d-contraction
mapping if there is some constant $ " (0" 1) such that for all m" m#" M ,

d(# (m) "# (m#)) $ $d(m" m#)%

When the metric d is understood, we simply refer to # as acontraction mapping . When
# describes the (single-valued) best-response function of a particular game, we say that
the game is contractive . The following useful lemma provides a simple sufÞcient condi-
tion for a continuously differentiable function # to be a contraction mapping.

L%&&" 1. If M % RK for some K " {1" 2"%%%}, then a continuously differentiable func-
tion # :M ! M is a contraction mapping if supm" M &D#(m) &< 1, where D#(m) is the
differential matrix of # and &á&is any matrix norm.

The proof of this lemma follows easily from Conlisk (1973). Using the abso-
lute row-sum norm, for example, one can show that # is a contraction mapping if
supm" R

!
l |&#k (m)/ &ml | < 1 at every m for each dimension k .

Since mechanisms induce different games for different type proÞles ! " ' , we must
extend our deÞnition of a contractive game when describing mechanisms.

D%,*)*!*-) 1. Let (M " d) be a complete metric space. A mechanism ( = (M " h) with
outcome function h is d-contractive on ' if for every ! " ' , the induced game with pref-
erences Ui (m|! i ) has a single-valued best-response function # (á" ! ) :M ! M that is a
d-contraction mapping.

Drop the reference to d when the metric is understood. Contractiveness is a strong
property to require of a mechanism; by the Banach Þxed point theorem, it guarantees
the existence of a unique Nash equilibrium of ( at ! . This equilibrium is globally stable
under the Cournot best-response dynamic. This means that if ( also Nash-implements
some social choice function f , then the outcome f ( ! ) will in fact be realized in the limit,
when agentsÕ play is described by Cournot best response.

Clearly, the processes that best describe dynamic human behavior are more complex
and subtle than the simple Cournot best-response dynamic, so guaranteeing stability for
a larger family of dynamics is desirable. In this vein, we provide a contraction-mapping
analog of the MilgromÐRoberts stability result for supermodular games: There is a fam-
ily of adaptive best-response dynamics(ABR dynamics) such that every dynamic in this
family is globally stable in any game with a contractive best-response function.

8Our reasons for using contractive mechanisms instead of supermodular mechanisms are discussed at
the end of this section.
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Formally, a learning dynamic is a function µ : {1! 2! " " "} ! " i #(M i ) specifying a
mixed strategy proÞle µ(t) for each point in time t # {1! 2! " " "}.9 Let S(µ(t)) $ M be the
support of each µ(t) and let m(t) # S(µ(t)) be the realized action at time t. For exam-
ple, a Cournot best-response dynamic would be a function satisfying S(µ(t)) = m(t) #
$ (m(t %1)|%) for all t > 1. To describe ABR dynamics formally, let H(t &! t) = { m(s) : t&'
s < t } denote the realized history of play from time t&up to (but not including) t and let
m( denote the unique Nash equilibrium of the game under consideration. Fix a met-
ric d. For any r ) 0, let B(r |m( ) = { m # M :d(m! m( ) ' r} be the closed ball with center
m( and radius r . Given any bounded set M &* M , deÞne

B(M &) =
!

{B(r |m( ) :M &$ B(r |m( )}

to be the smallest closed ball centered at m( that includes M &.

D!"#$#%#&$2. A learning dynamic {m(t) } is an adaptive best-response dynamic (ABR
dynamic ) if +t&, , öt > t &, +t ) öt , S(µ(t)) $ B($ (B(H(t &! t)))) .

To understand this deÞnition, consider Þrst two points in time t&and t . Take the
point m&# H(t &! t) that is farthest from the equilibrium m( and consider all points in
M that are closer to the equilibrium than m&. Calculate the best response to each of
those points, and among those calculated best responses, let m&&be the farthest from the
equilibrium. The requirement that S(µ(t)) $ B($ (B(H(t &! t)))) simply states that the
date- t mixed strategy cannot put positive weight on strategies that are farther from m(

than m&&. Thus, players observe history H(t &! t) , form a ÒbeliefÓ that the next proÞle will
be in B(H(t &! t)) , and choose any proÞle that is either a best response to this belief or, at
least, mixes over actions that are no farther from equilibrium than any best response to
this belief.

The quantiÞers then say that for any date t&, there is some later date öt , after which the
dynamic ignores the history of play prior to t&. Thus, the effect of early strategies must
eventually vanish.

T'!&(!) 1. If a game is contractive, then all adaptive best-response dynamics converge
to the unique Nash equilibrium.

Formal proofs appear in the Appendix .
Whether a given dynamic is an ABR dynamic may depend on the contractive game

under consideration. Simple Cournot dynamics are always in the ABR class. So too is the
family of k -period best-response dynamics suggested by Healy (2006) to be a reasonable
description of subjectsÕ play in experiments on repeated public-goods mechanisms. 10 In
fact, any dynamic where players best respond to some pure-strategy belief formed from
a convex combination of the not too distant history of play is always an ABR dynamic
and thus is convergent in contractive games.

9This deÞnition could be generalized to allow for continuous or Þnite time intervals.
10In these dynamics, each m(t) is a best response to the strategy (1/k)

" t
s= t%k m(s). Empirically, k = 5

Þts the Healy (2006) data best.
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Dynamics based on (mixtures of) best responses to beliefs (i.e., probability distribu-
tions) over B(H(t ′! t))Ñsuch as Þctitious playÑare not always in the ABR class, but they
are ABR dynamics in the contractive games induced by our mechanisms. As we illustrate
next, the key property for these dynamics to be ABR is concavity of the utility functions.
Consider a two-player game with Mi = [−1!1] and Ui(m) = max{1 − |mi −mj/2|!1 − ε−
|mi − 1|} for each i, where ε > 0 is small. Player iÕs best response tomj is mj/2 ≤ 1/2, it
yields utility 1 and the game is contractive. Playing mi = 1 yields utility 1 − ε regardless
of mj . If i best responds to a belief distribution that puts nontrivial weight on multiple
actions mj , then mi = 1 becomes the unique best response. In other words, iÕs best re-
sponse to her beliefs is not in the convex hull of the best responses to the support of her
beliefs. In this contractive game, Þctitious play is not an ABR dynamic and it may not
converge to the unique equilibrium m∗ = (0!0). However, if Ui is also concave in mi,
then best responses to beliefs must be in the convex hull of best responses to the sup-
port of the beliefs. In this case, Þctitious play becomes an ABR dynamic and converges
to the unique equilibrium.

Given these results, we focus primarily on designing contractive mechanisms. But
we also verify that our particular mechanisms induce concave utility functions Ui, so
that the set of convergent ABR dynamics is made even larger.

Supermodularity as a notion of stability

The existing literature takes the approach of requiring a mechanism to induce super-
modular games, which are also known to have certain desirable stability properties.
Consider the game induced by some mechanism # = (M!h) at type proÞle θ. Recall
that each Mi has Ki ≥ 1 dimensions and mik represents the kth dimension of mi. If
each Ui is twice differentiable everywhere, then, following Milgrom and Roberts (1990),
this game is said to be supermodular if the following properties hold:

1. For all i ∈ I and k '= l ∈ {1! % % % !Ki}, ∂2Ui/∂mik ∂mil ≥ 0.

2. For all i '= j ∈ I , k ∈ {1! % % % !Ki}, and l ∈ {1! % % % !Kj}, ∂2Ui/∂mik ∂mjl ≥ 0.

3. For all i, Mi is a compact interval in RKi .

Properties 1 and 2 guarantee that βi is increasing in othersÕ strategies. If conditions 1
and 2 are satisÞed but 3 is not, then we say the game is open-supermodular. Milgrom
and Roberts (1990) prove that for every supermodular game, there is a smallest and
largest Nash equilibrium, denoted here by m∗ and m∗, and if a given learning dynamic
is ÒadaptiveÓÑroughly, if it selects undominated strategies against a not too distant his-
tory of past playÑthen that dynamic converges to the interval [m∗!m∗]. If the game has
a unique equilibrium ( m∗ = m∗), then the equilibrium point is globally stable under all
adaptive learning dynamics.

Unfortunately, the usefulness of this stability result is sometimes quite limited. Since
the strategy space is required to be compact, then m∗ and m∗ may well be corner equi-
libria. In this case, the stability result may be vacuous. To illustrate, consider a simple
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F 1. Examples of Cournot best-response dynamics in (A) a supermodular and contractive
game (α = 0"5), and in (B) a supermodular game that is not contractive (α = 2). Dashed lines
represent the best-response functions if the strategy spaces were unbounded.

two-player game where Mi = [−100#100] and βi(m) = αmj for each i ∈ {1#2}. Two ex-
amples of such games are shown in Figure 1. If α ≥ 0, then this game is supermodular. If
α ∈ (−1#1), then the game is contractive.

In panel A of Figure 1 the game is both supermodular and contractive since α = 0"5.
There is a unique Nash equilibrium at m∗ = (0#0) and, by Milgrom and Roberts (1990),
all adaptive dynamics converge to m∗. The figure illustrates a typical path for Cournot
best-response dynamics, starting at m(1) and converging monotonically to m∗.

Panel B shows the best-response functions when α = 2. The game is still supermod-
ular (α > 0), but now has three Nash equilibria: m∗ = (−100#−100), m∗ = (0#0), and
m∗ = (100#100). In this case, the stability theorem of Milgrom and Roberts (1990) is
vacuous; the bounds on the limits of adaptive dynamics are the entire strategy space.
Furthermore, the interior equilibrium is unstable under most adaptive dynamics; a sim-
ple Cournot best-response process initiated away from m∗ converges monotonically to
either m∗ or m∗.

Now consider open-supermodular versions of these games, where the strategy space
is unbounded. The best-response functions are now represented by the dashed lines in
the figure. When α = 0"5 (panel A), stability of the unique equilibrium is maintained.
When α = 2 (panel B), however, the now-unique equilibrium m∗ continues to be unsta-
ble and the best-response dynamic diverges quickly.

Clearly, the stability of the interior equilibrium is driven by the magnitude of the
best-response slopes, but not their sign. In other words, contractiveness is the more
appropriate notion of stability in games with unbounded strategy spaces or when con-
vergence to corner equilibria is considered undesirable.
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Most existing work on supermodular mechanism design fails to appreciate this is-
sue.11 The following example demonstrates, however, that the type of instability for su-
permodular games shown in panel B of Figure 1 can also occur in a mechanism that
implements a desirable social choice function.

E 1. Let Mi = R1 for each i and suppose n is even. Take any quasilinear public-
goods environment of the form vi(y|θi) + xi, where there exists some η > 1 such that
v′′
i ∈ (−η#−1/η) for every i and θi. Consider the mechanism with free parameter γ > 0

given by

qi(m) =






κ

n
− γ

∑

j $={i#i+n/2}
mj if i ≤ n/2

κ

n
+ γ

∑

j $={i#i−n/2}
mj if i > n/2

gi(m) ≡ 0

and

y(m) =
n/2∑

i=1

mi −
n∑

i=n/2+1

mi

for each i.
One can show that this mechanism implements the Lindahl correspondence using

a proof very similar to that of Walker (1981). Calculating the slopes of the individual
best-response functions, however, gives

∂βi

∂mj
= γ

−v′′
i

− 1 ≥ γ

η
− 1

for each j /∈ {i# i + n/2} and ∂βi/∂mi+n/2 = 0. If γ > η, then βi is nondecreasing in mj for
all θi and so the game is open-supermodular. If γ > 2η, however, then the slopes of the
best-response functions are greater than 1, and the Cournot dynamics are unstable. ♦

Figure 2 shows the path of best-response dynamics for a particular example with
n = 4.12 The dynamic is initiated very close to equilibrium, but diverges exponentially
and is unstable.

Chen (2002) designs a family of mechanisms that she shows to be (open-) super-
modular under certain parameter restrictions. Given the above discussion, it is un-
clear whether this implies dynamic stability. Van Essen (2009) shows, however, that the
mechanism is also contractive under the same parameter restrictions, and so stability is
guaranteed.

11See Chen and Tang (1998), Chen (2002), and Healy (2006), for example, or Chen (2008) for a survey.
Mathevet (2010) is an exception; he considers Bayesian implementation and studies supermodular mech-
anisms with “small” equilibrium sets.

12Specifically, vi(y) = −(1/2)(y − 2)2 for each i, κ = 4, and γ = 2. The Nash equilibrium profile is m∗ =
(1/4#1/4#1/4#1/4) and the dynamic is initiated at m(0) = (0#0#0#0). At all points in time there are two pairs
of players choosing the same strategies, resulting in just two paths in the figure.
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F 2. Simulated best-response dynamics for an unstable supermodular mechanism.

In fact, Van Essen’s (2009) supermodularity-implies-contractiveness result appears
to be a more general phenomenon with a fairly intuitive explanation. Most existing
public-goods mechanisms feature a public-goods function y(m) and a payment func-
tion xi(m) of a form similar to

xi(m)= −κ

n
y(m)− γgi(m)#

where γ > 0 is a free parameter and gi(m) is increasing in the level of “disagreement”
between players’ messages. Examples include the mechanisms of Groves and Ledyard
(1977), Chen (2002), Van Essen (forthcoming), and our example Lindahl mechanism be-
low. For γ near zero, the mechanism is essentially a voluntary contribution mechanism
with equal cost sharing. This game has a best-response function whose slope is −(n− 1)
and is, therefore, highly unstable. For very high values of γ, the mechanism induces
a dynamically stable coordination game with a best-response slope of +1. As γ is in-
creased, the best-response slope typically increases monotonically from −(n− 1) to +1,
as in Figure 3. At some threshold γ′, the game becomes contractive, with a slope of at
least −1. Beyond a second threshold of γ′′ > γ′, the slope becomes positive, inducing a
supermodular game. Thus, choosing a high enough γ to guarantee supermodularity (as
in Chen and Tang 1998, Chen 2002, and Van Essen forthcoming) is more than sufficient
to also guarantee that the mechanism is contractive.

Figure 3 shows the slope of the linear best-response function in the Groves–Ledyard
mechanism for various values of γ using the utility parameters from the experiments of
Chen and Tang (1998) and Arifovic and Ledyard (2011), where n = 5.13 Contractiveness
obtains for γ ≥ 30 and supermodularity obtains for γ ≥ 80. Experimental results suggest
no convergence to equilibrium at γ = 1, very slow convergence for γ = 10, and rapid
convergence for γ ≥ 30.14 Convergence is generally faster and postconvergence behav-
ior is more stable for higher values of γ. These results suggest that contractiveness is a

13Specifically, vi(y|θi) =Ai −Biy2 with Bi ∈ [1#8]. The values of γ tested are 1, 30, 50, 100, and 260.
14The slow convergence for γ = 10 is intriguing; it suggests that subjects may follow a particular dynamic

that can be stable even in games that are not contractive. Arifovic and Ledyard (2011) provide a dynamic
that fits well the broad patterns of the experimental data.
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F 3. The slope of the best-response functions in the Groves–Ledyard mechanism as the
parameter γ varies.

useful predictor of stability in the laboratory, and supermodularity may be an excessive
requirement.15

There is some justification, however, for requiring both supermodularity and con-
tractiveness. First, convergence to equilibrium is fastest (in theory) when best-response
slopes are close to zero. The Arifovic and Ledyard (2011) experimental results suggest
that a positive slope leads to faster convergence than a negative slope.16 Requiring su-
permodularity guarantees that best-response slopes fall in this range.

One major difference between supermodular and contractive games is that contrac-
tive games have unique equilibria, while supermodular games may not. Each has its
drawbacks and benefits in the context of mechanism design: Contractive mechanisms
can only implement single-valued social choice functions (or single-valued selections
from social choice correspondences), since multiple equilibria would be required to im-
plement multiple outcomes. This may be beneficial, however, because it avoids the am-
biguity and selection problems of games with multiple equilibria. Supermodular games,
on the other hand, can implement multivalued objectives, but suffer from indetermina-
cies regarding equilibrium selection. In our view, mechanism design in practice most
likely focuses on single-valued selections of social choice correspondences, in which
case the benefits of contractiveness prevail.

Given the theoretical considerations and experimental evidence, we focus here on
contractiveness as our notion of stability.

15Chen and Gazzale (2004) study the compensation mechanism of Varian (1994) in the laboratory. When
the punishment parameter β is increased, the best-response slope increases from −1/2 to +1. As in the
Arifovic and Ledyard (2011) experiments, convergence is stronger for higher values of β.

16A slope very near +1 is undesirable, however, because convergence slows again. This begins to appear
in Arifovic and Ledyard’s (2011) data when γ = 260.
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Two stable mechanisms

In this section, we present mechanisms that have nearly all the features one might ask;
they implement Pareto optimal and individually rational allocations for a wide range
of economic environments, they are dynamically stable for a large family of adaptive
learning dynamics, they balance the budget both in and out of equilibrium, and the
individual message spaces are of minimal dimension necessary for dynamic stability.

To obtain stability results, we restrict attention to concave, quasilinear preferences
of the form ui(xi! yi|θi)= vi(yi|θi)+ xi that satisfy the next assumption.

A 1. For all types θ ∈ #, all agents i have quasilinear preferences of the form
vi(yi|θi)+ xi, where v′

i > 0 and there is some η> 0 such that v′′
i ∈ (−η!−1/η).17

We justify our assumptions on preferences in a later section by showing that it is
nearly necessary for stability under well behaved mechanisms. The argument is based
on the instability theorems of Jordan (1986) and Kim (1987). These results imply that
stability cannot be achieved for completely general preferences, so we assume quasilin-
earity of preferences. Moreover, Jordan remarks that instability crucially relies on the
range of second-order preference behavior, hence the bound on concavity. Our Propo-
sition 2 in Section 5 demonstrates the necessity of these bounds. Also, the exact values
of the bounds need to be known by the designer so as to set mechanism parameters that
guarantee contractiveness. Thus, a designer must have substantial knowledge about the
space of possible preferences.

A contractive mechanism for Lindahl allocations

The description of our stable mechanism for Lindahl allocations follows. Let Mi = Ri ×
Si for each i with Ri = Si = R1, choose δ> 0 and γ > 0, and set

y(r) = 1
n

∑

i

ri (3)

qi(m−i! s−i) = κ

n
+ δ(n− 1)

(
si−1 − γ

n− 1

∑

j %=i

rj

)
(4)

and

gi(r! s)= 1
2(si − γri+1)

2 + 1
2δ(si−1 − γri)

2! (5)

where i+ 1 and i− 1 are taken to be modulo n.

T 2. The mechanism defined by (3)–(5) fully Nash-implements the Lindahl cor-
respondence. Under Assumption 1, if

γ ∈
(√

(n+η2)2 + 4n(n− 1)η4 − (n+η2)

2nη2 !
n− 1
n

)
(6)

17These bounds are inconsistent with Assumption 6(A) in the Appendix, but, depending on the mecha-
nism, may or may not be consistent with Assumptions 4 or 4′.
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and

δ ∈
(

η

nγ
$

1
(n−1

n − γ
)
(1 + γ)nη

)

$ (7)

then the mechanism is contractive but not supermodular. If

γ ∈
(
n− 1
n

$1
)

(8)

and

δ ∈
(

η

nγ
$

1
(
γ − n−1

n

)
(1 − γ)nη

)

$ (9)

then the mechanism is both contractive and supermodular.18 In either case, the mecha-
nism is contractive and each Ui is concave in (ri$ si).

The messages in this mechanism can be interpreted in the following way: Agents are
ordered in a circle. Each ri represents agent i’s requested level of the public good. The
actual level chosen is the average of the requests. The message si represents i’s guess of
his neighbor’s request, adjusted by γ. Agents are penalized for the error in their guess
(si − γri+1), as well as for the error in their neighbor’s guess about them (si−1 − γri). In
equilibrium, guesses are accurate, meaning si = γri+1 and si−1 = γri, and so no penal-
ties are realized. Prices qi are simply an equal share of the marginal cost (κ/n) plus a
linear term that increases in the difference between i − 1’s guess of i’s request and the
average of the others’ actual requests. In equilibrium, guesses are correct, so agents who
request higher public-good levels are forced to pay higher prices. The sum of prices in
equilibrium always equals the marginal cost, as is required at Lindahl allocations.

To gain intuition for the stability result, suppose that some agent j #= i+1 increases rj
by one unit. For agent i, this increase has a quantity effect of increasing y(r) by 1/n and
a price effect of reducing qi(r−i$ s−i) by δγ. Agent i’s response to the quantity effect is to
reduce ri by an equal amount, returning y(r) to his most preferred level. But the lower
personal price for the public good induces agent i to increase y(r) by δγ/v′′

i . Finally, the
resulting net change in ri is further tempered by a coordination effect, since changing ri
increases the penalty term δ(si−1 − γri)2. The parameter values are then chosen so that
these effects nearly cancel out and the resulting total change in ri is sufficiently close to
zero, regardless of v′′

i .
A unit increase in ri+1 not only has these same price, quantity, and coordination

effects, but also a coordination effect on si. Agent i’s optimal response is to increase si

18If n≤ η2/(2η−1), then such a value of δ exists only if γ is sufficiently close to (n−1)/n or 1. Specifically,
a value exists if and only if

γ ∈
(
n− 1
n

$1 − (n+η2)+
√
(n+η2)2 − 4n2η2

2nη2

)
∪

(
1 − (n+η2)−

√
(n+η2)2 − 4n2η2

2nη2 $1
)
$

both of which are nonempty intervals. If n > η2/(2η− 1), then a value of δ exists for every γ ∈ ((n− 1)/n$1).
Contractiveness obtains on the boundary of supermodularity (when γ = (n− 1)/n) only in the very special
case where η ∈ (1$n/(n− 1)). Thus, we rule out γ = (n− 1)/n generally.
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by γ, keeping his guess accurate. As long as γ < 1, this added coordination effect is also
contractive.

Finally, a unit increase in si−1 has similar offsetting effects: Agent i increases ri by 1/γ
due to the coordination effect, but reduces ri by δ(n − 1)/v′′

i due to the increased price
effect. Again, these responses are tempered by the penalty from i − 1’s guess becoming
inaccurate, and the parameter restrictions ensure that the net effects almost perfectly
offset.

Consider now large economies or economies with very rich type spaces. If n or η
grows large, then γ must approach 1. For large η (fixing n), δ must become large. For
large n, however, δ could in fact become quite small, as the lower bound η/(nγ) from (9)
is decreasing in n. Thus, increasing the richness of the type space necessitates extreme
penalties and price reactions, but simply increasing the population size does not.

One downside of the above mechanism is that it fails to balance the budget at certain
out-of-equilibrium message profiles. This occurs both because the penalty terms (gi)
may all be strictly positive and because the price terms (qi) may sum to something other
than the marginal cost. Both of these sources of imbalance can be corrected, however,
by adding appropriate terms to the penalty functions. For the case of n ≥ 4, this can be
done by taking the gi function from (5) and modifying it to

ĝi(r$ s)= gi(r$ s)+ dLi (r−i$ s−i)$ (10)

where dLi (r−i$ s−i) is a polynomial given by (30) in the Appendix.

C 1. Suppose n ≥ 4 and Assumption 1 holds. If γ and δ satisfy (6) and (7) or
(8) and (9), then the mechanism defined by (3)–(5) and (10) fully Nash-implements the
Lindahl correspondence, is contractive on %, and is budget-balanced for all m ∈ M. Fur-
thermore, each Ui is concave in (ri$ si).

Beyond this specific mechanism, our approach shows how other contractive mech-
anisms can be constructed. For example, we can show that Chen’s (2002) open-
supermodular mechanism is also contractive, which Van Essen (2009) has verified.
Van Essen (forthcoming) also provides a mechanism that is both contractive and open-
supermodular. Both Chen’s and Van Essen’s mechanisms are not balanced out of equi-
librium. To our knowledge, the mechanism in (3)–(5) and (10) is the first contractive
mechanism that is also budget-balanced out of equilibrium. Since out-of-equilibrium
learning is an important motivation for this research, we view budget balance as an
important requirement. Although our example mechanism is somewhat complex—
especially with the budget-balancing adjustment—our impossibility result for one-
dimensional mechanisms (Theorem 6) suggests that complexity cannot be improved
substantially.

A contractive mechanism for Walrasian allocations

The process of designing a contractive Walrasian mechanism is nearly identical to the
process of designing a contractive Lindahl mechanism, though the exact functional
forms obviously must differ.
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The example mechanism we provide is two dimensional with Mi = Ri × Si = R2 for
each i. Fix any γ ∈ (1/(n− 1)"1). The outcome functions are then given by

yi(r" s−i) = ri −
1

n− 1

∑

j $=i

rj (11)

qi(r−i" s−i) = 1
δ

(
si−1 + γ

∑

j $=i

rj

)
(12)

and

gi(r" s)= (si − γri+1)
2 (13)

for each i, with i− 1 and i+ 1 taken to be modulo n.

T 3. The mechanism defined by (11)–(13) fully Nash-implements the Walrasian
correspondence. For any γ ∈ (1/(n − 1)"1) and δ > γη(n − 1) (where η is the bound on
each v′′

i ), it is contractive on % and each Ui is concave in (ri" si).

This mechanism is not supermodular for any parameters, since increases in si−1 gen-
erate a price effect that leads i to reduce yi by reducing ri.

Here, agents are submitting a suggested net trade quantity (ri) and a guess of their
neighbor’s suggested net trade (si). Their actual net trade is the amount by which their
suggested trade is above or below the average suggested trade. They receive a penalty
for incorrect guesses of their neighbor, which, along with the price term qi, disciplines
the mechanism to generate dynamic stability in much the same way that the Lindahl
mechanism was made stable through penalties.

The mechanism is stable because it creates inertia in each dimension of the message.
Each agent is a price-taker and chooses her level of private good yi by using the first
dimension of her message. If agents j $= i change their messages, then agent i will try to
match the average variation of the rj ’s to restore her preferred net trade. But she does
not want to match it completely because of the price effect. Notice, indeed, that an
increase in

∑
j $=i rj increases the price qi, hence it moderates i’s response. In the end,

the change in agent i’s first dimension is less than the variation in the average of others.
Out of equilibrium, the mechanism is not anonymous in the sense that each agent is
possibly offered a different price for the same goods. So the second dimension of the
message guarantees that the price is the same for everyone in equilibrium. But this has
to be done while preserving stability, which is why i only chooses si to match a fraction
(γ < 1) of her neighbor’s suggested trade.

As with the Lindahl mechanism, the lower bound on δ need not grow as the econ-
omy becomes large. Since γ can be kept arbitrarily close to 1/(n − 1), the lower bound
on δ can be kept arbitrarily close to (and just above) η. But, as in the Lindahl mecha-
nism, δ must grow large as the type space becomes rich, since its lower bound grows
linearly in η. With a large δ, the price function converges to zero, so agents choose
their consumption bundle as though the nonnumeraire good were effectively free. This
highlights a key difference between Lindahl and Walrasian mechanisms: If agents ignore
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prices and penalties in the Lindahl mechanism, then the game is naturally unstable, and
so prices and penalties are needed to restore stability. If agents ignore prices and penal-
ties in the Walrasian mechanism, the game is (approximately) stable since each rj enters
into yi negatively. In this case, the prices and penalties are needed only to ensure that
the mechanism implements Walrasian allocations; the magnitude of the price function
is made small so that the price effect does not interfere with stability. The penalty term
is needed only to pin down the optimal choice of si, which can then be used to ensure
that the agents’ prices are always equal in equilibrium without letting the price function
depend on ri or si.

The above mechanism fails to balance the budget at certain out-of-equilibrium mes-
sage profiles, because the nonnumeraire good is not balanced out of equilibrium. As
with the Lindahl correspondence, the sources of imbalance can be corrected by adding
appropriate terms to the penalty functions. For the case of n ≥ 4, this can be done by
taking the gi function from (13) and modifying it to

ögi(r! s) = gi(r! s) + dWi (r−i! s−i)! (14)

where dWi (r−i! s−i) is given by (35) in the Appendix.

C!"!##$"% 2. If n ≥ 4 and " > #$ (n − 1), then the mechanism deÞned by (11)Ð(14)
fully Nash-implements the Lindahl correspondence, is contractive on %, and is budget-
balanced for all m ∈ M . Furthermore, each Ui is concave in (ri! si).

4. C&$"$'()"*+$(*!,- !. */0#)/),(*,1 /)'&$,*-/-

We now describe the process by which these mechanisms were constructed. A general
method for constructing stable mechanisms is useful because example mechanisms
may not pass the test of time as behavioral research progresses. Other restrictions on
mechanisms may be discovered, and this method for constructing new mechanisms can
easily be adapted as new restrictions are added.

Our method has two steps: First, we characterize the “shape” of implementing
mechanisms. Then we add our extra requirement of stability as a further restriction on
the shape of the mechanisms. This leads us to rule out one-dimensional mechanisms
as potential candidates. We, therefore, conclude that a stable mechanism is a multidi-
mensional contractive price–quantity mechanism, as in the example mechanisms given
above. These characterizations also have implications about the complexity that is nec-
essary for a mechanism to Nash-implement Walrasian or Lindahl allocations.

We no longer apply Assumption 1 (quasilinearity); in this section, we require only
that preferences be differentiable and strictly increasing in the numeraire.

Characterization of one-dimensional mechanisms

For clarity, we first restrict attention to one-dimensional mechanisms where M i = R1

for each i ∈ I . The characterization theorems are more transparent and intuitive in the



630 Healy and Mathevet Theoretical Economics 7 (2012)

one-dimensional case; the case of higher-dimensional mechanisms is brießy covered in
a later subsection.

We begin by assuming twice-differentiable mechanisms. This assumption is mainly
for technical convenience and does not substantially hinder our ability to design sta-
ble mechanisms (Theorems 2 and 3). Furthermore, we believe that highly discon-
tinuous mechanisms (such as MaskinÕs canonical mechanism or AbreuÐMatsushimaÕs
dominance-solvable mechanism) may be too complex for real-world application.

A!!"#$%&'( 2 (Differentiability). For each agenti , the message spaceM i equalsR1, and
the functions xi and yi are twice continuously differentiable in mi on M .

Our next assumption explicitly rules out cases where agent iÕs outcome function be-
comes arbitrarily ßat. This does not rule out any existing mechanisms in the literature;
most use linear functions such as yi (m) =

!
j mj .

A!!"#$%&'( 3 (Responsive yi ). For each i , there exists some! i > 0 such that for all
m ! M , |"yi (m)/ " mi | " ! i .

Under Assumption 3 , yi becomes bijective in mi . This guarantees a form of citizen
sovereignty wherein each agent is able to select any öyi ! R through his or her choice
of mi .19 It also means yi is invertible for each m# i , enabling us to view agent iÕs attainable
consumption bundles as the graph of a single-valued function from yi into xi . We denote
this by

#i ( öyi |m# i ) := xi (y
# 1
i ( öyi |m# i )$m# i )$

where y# 1
i ( öyi |m# i ) identiÞes the unique mi such that yi (mi $m# i ) = öyi . Thus #i ( öyi |m# i ) is

the amount of good x that i must choose if he wants öyi units of good y, given m# i .
We show an example of # i (yi |m# i ) in Figure 4. At the point m$, the outcome (x i (m$),

yi (m$)) is realized by agent i . As i differentially changes his message mi , he differentially
changes his allocation (x i $yi ) along the graph of # i . The downward slope of this graph
at m$Ñwhich we label Pi (m$)Ñrepresents the differential change in xi per unit of yi . We
call this the effective price of yi charged by the mechanism at m$. Formally,

Pi (m) := #
" xi (m)/ " mi

"yi (m)/ " mi
% (15)

If m$ is a Nash equilibrium, then the standard Þrst-order conditions imply that

" ui (x i $yi |&i )/ "yi

" ui (x i $yi |&i )/ " xi
= Pi (m$)$

so that the marginal rate of substitution between yi and xi equals the effective price of
the mechanism at m$.20

19This is reminiscent of Novshek (1985), for example, who views Þrms in an oligopoly market as choosing
aggregate output rather than individual production.

20Recall that M is open, so there are no boundary Nash equilibria.
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F!"#$% 4. The mapping ! i (yi |m! i ) and the effective price Pi (m) at m" .

F!"#$% 5. (A) The triple tangency property and (B) a bad Nash equilibrium.

If this mechanism Nash-implements a Walrasian or Lindahl equilibrium, then the
marginal rate of substitution must also equal the Walrasian or Lindahl price. Thus, the
effective prices at the equilibrium message proÞle m" must also match the Walrasian or
Lindahl price for each environment " . This leads to the following observation:

O&'%$()*!+, (The triple tangency property). If a mechanism Nash-implements Wal-
rasian or Lindahl allocations, then at any Nash equilibrium m" , each agentÕs indiffer-
ence curve in (x i #yi ) space must be tangent to both the mechanismÕs outcome manifold
! i (á|m"

! i ) and the corresponding Walrasian or Lindahl equilibrium price hyperplane.

The triple tangency property is illustrated in panel A of Figure 5; for type " i , the point
zi is both a Nash equilibrium outcome and a Walrasian allocation at price p . Similarly,
z#

i is a Nash equilibrium and a Walrasian allocation (at price p #) for type " #
i .

Now consider panel B of Figure 5. If the type space is sufÞciently richÑmeaning
that every outcome z is a Nash equilibrium outcome for some environmentÑthen there
exists some " ##$ $ such that the point z##

i is also a Nash equilibrium outcome. This
must be a ÒbadÓ Nash equilibrium, however, because the outcome z##

i cannot possi-
bly be a Walrasian equilibrium allocation; the indifference curve is not tangent to the
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price hyperplane p !! that connects ! i and z!!
i . Because of this bad Nash equilibrium, the

mechanism represented by " i does not (weakly) implement the Walrasian or Lindahl
correspondence.

If the type space is rich, then every point along " i can be made into a Nash
equilibrium outcome by selecting an appropriate type proÞle. If we require weak
implementationÑand, therefore, no bad equilibriaÑthen " i must be linear and pass
through ! i . Any nonlinearity creates a bad equilibrium. But a linear " i function means
that i is forced to act as if he is choosing an optimal level of yi , taking as given a Þxed
per-unit price. This priceÑthe slope of " i Ñmay still vary in m" i , but not in mi . This
simple observation generates our key necessary condition.

A!!"#$%&'( 4 (Rich type space). We have#($ ) = M .

This assumption places restrictions on the equilibrium set rather than on the prim-
itives of the model; in the Appendix , we provide two linked assumptions on the primi-
tives that together imply Assumption 4 .

T)*'+*# 4 (Necessity). Under Assumptions 2, 3, and 4, if a mechanism %= (M i &qi &
gi &yi ) i weakly Nash-implements the Walrasian or Lindahl correspondence, then for every
i # I and every m # M ,

xi (m) $ " qi (m" i )yi (m) & (16)

so that gi (m) $ 0.

Thus, Pi (m) = qi (m" i ) . Since qi now represents the per-unit price paid by agent i , an
immediate but useful corollary of Theorem 4 follows.

C'+',,-+. 3. Under Assumptions 2, 3, and 4, if a mechanism %= (M i &qi &gi , yi ) i weakly
Nash-implements the Walrasian correspondence, then for every m # M ,

qi (m" i ) = qj (m" j ) %i&j (17)

and, therefore,
!

i

yi (m) = 0' (18)

If %weakly Nash-implements the Lindahl correspondence, then for every m # M ,

yi (m) = yj (m) %i&j (19)

and, therefore,
!

i

qi (m" i ) = (' (20)
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Theorem 4 is stated for weak implementation, but obviously applies to full imple-
mentation as well. This theorem gives a strong but intuitive result: If a mechanism is to
Nash-implement the Walrasian or Lindahl correspondence, then each agentÕs message-
choosing problem in the mechanism (taking othersÕ messages as Þxed) must be iden-
tical to the quantity-choosing problem in an exchange economy when prices are taken
as given. In the case of a mechanism, the quantity yi is chosen indirectly through the
choice of mi , and the price is determined endogenously as a function of m! i . In ex-
change economies, agents choose yi directly and face exogenously given prices.

For the case of public-goods economies, compare Theorem 4 with the mecha-
nisms of Groves and Ledyard (1977), Walker (1981), and Tian (1990). All three are one-
dimensional mechanisms in which qi depends only on m! i , but the GrovesÐLedyard
mechanism has a nontrivial penalty function gi , while the latter two do not. Conse-
quently, WalkerÕs and TianÕs mechanisms Nash-implement the Lindahl correspondence,
while the GrovesÐLedyard mechanism does not.

For private-goods economies, Theorem 4 is very strong. If no agent is allowed to
affect his or her own per-unit price, if all agents must have the same price at every equi-
librium message, and if every message is an equilibrium message for some type proÞle,
then the only admissible price function qi is a constant function that depends on no
agentsÕ reports. But clearly such a mechanism cannot fully implement the Walrasian
correspondence on a rich type space, so we arrive at a contradiction. This proves the
following corollary.

C!"!##$"% 4. Under Assumptions 2Ð4, a one-dimensional mechanism that Nash im-
plements the Walrasian correspondence does not exist.

Corollary 4 was Þrst proven by Reichelstein and Reiter (1988) using substantially dif-
ferent mathematical techniques.

Finally, we show that the necessary conditions of Theorem 4 are also sufÞcient for
weak implementation. Full implementation is achieved if, for each Lindahl or Walrasian
equilibrium point, there is some message m" # M that maps to it.

A&&'()*+!, 5. For every(x $
i ! y$

i ! p $
i ) i # R2n+ 1 that is a Walrasian or Lindahl allocation

for some " # # , there is a messagem" # M such that

(x i (m")! yi (m")! qi (m")) i = (x $
i ! y$

i ! p $
i ) i $

Note that Assumption 5 is slightly stronger than requiring f ( # ) %h(M ), because it
also requires that every possible Lindahl price be achievable by the qi functions.

T-.!".( 5 (SufÞciency). If a mechanism %satisÞes Assumptions2 and 3, and (16), (17),
and (18), then %weakly Nash-implements the Walrasian correspondence. If ( 17) and (18)
are replaced with ( 19) and (20), then %weakly Nash-implements the Lindahl correspon-
dence. If, in addition, %satisÞesAssumption 5, then %fully Nash-implements the Wal-
rasian or Lindahl correspondence.
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Under Assumption 5 , the above necessary conditions become sufÞcient. The proof
of sufÞciency for weak implementation is intuitive. Take the case of a private-goods
economy. Since yi (mi ! m! i ) is bijective in mi , choosing mi is equivalent to choosing yi

with qi (m! i ) Þxed. Hence, choosing a message is similar to maximizing utility subject to
the budget constraint. ( 17) and (18) ensure market clearing.

Assumption 5 guarantees that any Walrasian equilibrium allocation can be reached
by some message m" # M with qi (m"

! i ) equalling the Walrasian price for each i . Be-
cause the Walrasian equilibrium allocation is budget-constrained optimal, yi is bijective,
and the linear mechanism mimics this budget constraint, the m"

i mapping to yi (m"
i ! m"

! i )
must be a best response for agent i . Thus, every Walrasian allocation is a Nash equilib-
rium and full implementation is achieved.

To demonstrate the gap between weak implementation and full implementation,
consider the equal-tax voluntary contribution mechanism, where M i = R1 for each i ,
y(m) =

!
i mi , and xi (m) = ! " y(m)/n (seeGroves and Ledyard 1980 or Healy 2006). The

hypotheses of the Þrst part of Theorem 5 are satisÞed, so this mechanism weakly Nash-
implements the Lindahl correspondence. But Assumption 5 fails at any # that has a
Lindahl equilibrium (x $

i ! y$
i ! p $

i ) i with p $
i %= p $

j for some i! j (which is true generically),
because qi (m! i ) = qj (m! j ) for every m # M . In these environments, the mechanism
has no Nash equilibrium and full implementation fails.

The impossibility of contractive one-dimensional mechanisms

We now show that there cannot exist a mechanism with one-dimensional strategy
spaces (M i = R1 for each i ) that Nash-implements the Lindahl or Walrasian correspon-
dence under our maintained assumptions.

T!"#$"% 6. Under Assumptions 2Ð4 and 1, a mechanism with M i = R1 for each i that
is both contractive and Nash-implements the Lindahl or Walrasian correspondence does
not exist.

Therefore, the contractiveness property requires slightly more complex
mechanisms.

Note that the proof for the Walrasian correspondence is trivial, since no one-
dimensional mechanism that implements the Walrasian allocations exists.

Inspection of the proof reveals that Theorem 6 holds true even if v""
i can take any

value in (!& ! 0); the bounds on v""
i from Assumption 1 are needed in the sequel to gen-

erate higher-dimensional mechanisms that are contractive.

Characterization of higher-dimensional mechanisms

Multidimensional mechanisms are indispensable for stability, since one-dimensional
mechanisms are necessarily unstable. We derive several useful conditions on imple-
menting mechanisms by extending ideas from the previous section. We relegate part of
the argument to the Appendix .
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We let M i = R i ! Si , where, for each i , R i " RJi represents those dimensions that af-
fect yi (r! s# i ) and let Si " RKi # Ji be those dimensions that do not. With the partitioning
of the strategy spaces into R i and Si , we can modify ( 2) slightly and write any mecha-
nismÕs numeraire outcome function as

xi (r! s) = # qi (r! s)yi (r! s# i ) # gi (r! s)"

(In a public-goods environment, y depends only on r.) Unlike ( 2), this formulation al-
lows the price term qi to depend on agent iÕs message. We now reformulate our previous
assumptions for the case of multiple dimensions.

A!!"#$%&'( 1$(Differentiability). For each agent i and each message vectorm %M , the
functions xi and yi are twice continuously differentiable in every dimension of mi .

A!!"#$%&'( 2$ (Responsive yi ). For each i , there exists some#i > 0 such that for all
(r! s) %M and all dimensions k %{1! " " " !Ji }, |$yi (r! s# i )/ $rik | & #.

DeÞne

%i (r! s# i ) := argmax
s$
i %Si

xi (r! s$
i ! s# i )

for each i and

%(r) := { s' %S : (( i %I ) s'
i %%i (r! s'

# i )}"

Thus, %(r) represents the pure-strategy equilibria of a transfer-maximizing game in
which agents pick si to maximize xi given r . If s /%%(r) , then the pair (r! s) cannot be
a Nash equilibrium of the mechanism for any &.

For each agent i and dimension k , deÞne the effective price along dimension k at
message(r! s) by

Pik (r! s) := #
$xi (r! s)/ $rik

$yi (r! s# i )/ $rik

and note that by the same argument as in the one-dimensional case, it must be that
Pik (r! s) equals iÕs marginal rate of substitution between yi and xi at any equilibrium
(r! s). So a point (r $! s$) such that Pik (r $! s$) )= Pil (r $! s$) cannot be a Nash equilibrium.
Given these two restrictions, we now deÞne

M ' :=
!
m = (s! r) %M : (( i %I ) ( ( k ! l %{1! " " " !Ji }) Pik (m) = Pil (m) and s%%(r)

"

to be the set of Òcandidate equilibriumÓ points in M . Note that if each ri is one-
dimensionalÑas is true in our example mechanisms from Section 3Ñthen M ' is sim-
ply those points satisfying s %%(r) . We obtain the following necessary conditions. 21 If
a mechanism ' weakly Nash-implements the Walrasian correspondence, then for every
(r ' ! s' ) %M ' ,

#

i

yi (r ' ! s'
# i ) = 0 (21)

21These conditions emerge as a direct corollary of Theorem 8 (see the Appendix ).
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and

qi (r ! ! s! ) = qj (r ! ! s! ) " i! j " (22)

If # weakly Nash-implements the Lindahl correspondence, then for every m # M ! ,

!

i

qi (r ! ! s! ) = $ (23)

and

yi (r ! ! s!
$ i ) = yj (r ! ! s!

$ j ) " i! j " (24)

We use these conditions in the next result to build our mechanisms.

A!!"#$%&'( 3%. For every(x !
i ! y!

i ! p !
i ) i # R2n+ 1 that is a Walrasian or Lindahl allocation

for some %# &, there is a messagem%# M ! such that

(x i (m%)! yi (m%)! qi (m%)) i = (x !
i ! y!

i ! p !
i ) i "

T)*'+*# 7 (SufÞciency). If # is a mechanism satisfying Assumptions 1%and 2%, equali-
ties (21) and (22), and

(i) qi (r! s) & qi (r $ i ! s$ i )

(ii) gi (r! s) ' 0 for every (r! s) # M

(iii) gi (r! s) = 0 if (r! s) # M ! ,

then # weakly implements the Walrasian correspondence. If ( 21) and (22) are replaced
with ( 23) and (24), then # weakly implements the Lindahl correspondence. If, in addi-
tion, # satisÞesAssumption 3%, then # fully Nash-implements the Walrasian or Lindahl
correspondence.

This theorem implies that the mechanism from Theorem 2 implements the Lindahl
correspondence. We can verify that gi ' 0 with gi = 0 when s# ' (r) , qi depends only on
m$ i ,

"
i qi = $ if s # ' (r) , y is bijective in ri , and for every Lindahl equilibrium, there is

some messagem%# M that maps to the Lindahl equilibrium allocation and prices.
In summary, higher-dimensional mechanisms may allow agents to affect their own

prices and face nontrivial penalty functions, but the penalty function must equal zero
on the equilibrium set, and each agentÕs price must not change as the agent unilaterally
changes ri and adjusts si appropriately. At out-of-equilibrium or nonregular equilib-
rium points, however, we derive no restrictions on the shape of the mechanism. It is this
freedom that allows us to introduce global stability properties into a mechanism. Intu-
itively, one should be able to take a mechanism satisfying the restrictions of Theorem 8
(page 653) and alter the mechanism on M \ M ! so that any adaptive dynamic process
that wanders off of M ! eventually returns to the appropriate point in M ! , restoring the
equilibrium.
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How to construct contractive mechanisms

Given a mechanism, the slopes of the best-response functions can be calculated using
one of two different methods.

If the value of ! i (r" s! i ) can be computed from the mechanism, then the direct
method can be used. First, it must be veriÞed directly that ! i is contractive; using the
row-sum norm and Lemma 1, this means we must verify that

sup
(r"s)

!

j "= i

" #
#
#
#
#! i

#rj

#
#
#
#+

#
#
#
#
#! i

#sj

#
#
#
#

$
< 1$ (25)

Next, the Þrst-order condition of utility maximization with respect to ri is calculated.
Replacing si in that condition with ! i (r" s! i ) describes the Þrst-order condition in ri as
si adjusts optimally in response. Taking derivatives of this Þrst-order condition with re-
spect to each rj and sj identiÞes how ri responds to changes in each other variable. Given
these slopes, the row-sum condition

sup
(r"s)

!

j "= i

" #
#
#
#
#%i

#rj

#
#
#
#+

#
#
#
#
#%i

#sj

#
#
#
#

$
< 1 (26)

is sufÞcient.
If ! i cannot be solved directly then the implicit function theorem can still be used

to derive closed-form expressions for the slopes of ! i and %i . These are given by the
solution to the system of equations.

%

&

#2Ui
#r2

i

#2Ui
#ri #si

#2Ui
#si #ri

#2Ui
#s2

i

'

(

) #%i
#rj

#%i
#sj

#! i
#rj

#! i
#sj

*

= !

) #2Ui
#ri rj

#2Ui
#ri sj

#2Ui
#si rj

#2Ui
#si sj

*

$

There is a unique solution to these equations if the leftmost matrix is invertible. In that
case, closed-form expressions for the slopes can be derived. Given these slopes, the
contraction conditions ( 25) and (26) can be checked directly. Parameters guaranteeing
supermodularity can be derived similarly, by guaranteeing that each slope is positive.

These methods are only useful for checking the stability of an existing mechanism.
The following procedure shows how our example Lindahl mechanism was constructed
following the sufÞciency conditions of Theorem 7. This provides a general blueprint for
how other, similar mechanisms could be constructed.

Step 1. Only two dimensions are needed for stability, so let ri and si each be one di-
mensional. This reduces M # to those messages where s= ! (r) .

Step 2. For simplicity, let y(r" s) depend only on r. Since y(r) must be responsive ( As-
sumption 2 $), an obvious choice is y(r) = &

+
i ri , with & > 0.

Step 3. Since prices must sum to ' , let qi (r ! i " s! i ) = ' /n + öqi (r ! i " s! i ) , where
+

i öqi (r ! i " s! i ) = 0 whenever s %! (r) . Its exact form will be determined in later
steps.
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Step 4. The penalty term must satisfy gi ! 0 with gi = 0 when s " ! (r) . Quadratic
terms such as (si # " ri+ 1)2 are a simple choice and, with a linear y(r) function,
guarantee that Ui is concave in (r i #si ). This means ! i (r) = " ri+ 1, and so " < 1 guar-
antees that stability condition ( 25) is satisÞed.

Step 5. To determine öqi , note that an increase in any rj generates a quantity effect on
agent i through increasing y(r) . This prompts i to reduce ri . This can be offset
by having rj enter negatively into öqi , generating a positive price effect on ri . For
example, consider öqi (r # i #s# i ) = $(#

!
j $= i rj ) .

Step 6. Since we must have
!

i öqi = 0 when s = ! (r) , use the s# i terms to balance öqi .
SpeciÞcally, let öqi (r # i #s# i ) = $((n # 1)si# 1 # "

!
j $= i rj ) , which now sums to zero

when si# 1 = " ri .

Step 7. The price effect from including si# 1 in qi (r # i #s# i ) must be offset by a coordi-
nation effect in gi . This is done by letting gi (r#s) = (si # ri+ 1)2 + $(si# 1 # ri )2.

Step 8. Now take the resulting mechanism, use the direct method for deriving the
contraction conditions ( 25) and (26) above, and Þnd parameter values %, " , and
$ that satisfy those two conditions. The resulting mechanism is contractive and
has concave utilities over strategies.

The mechanisms of Chen (2002) and Van Essen(forthcoming ) also can be thought
of as being constructed through this procedure. Both choose (si # y(r)) 2 instead of
(si # " ri+ 1)2 at Step 4. Van Essen addssi# 1 to öqi in Step 6, but Chen instead adds

!
j $= i sj .

This necessitates adding
!

j $= i $(sj # y(r)) 2 to the penalty function at Step 7. Obviously,
many other mechanisms could be constructed by varying these choices.

5. D!"#$""!%&

Generalizing to multiple goods

Thus far our focus has been limited to economies with only one nonnumeraire good,
and our stability result has been limited only to economies with preferences that are
quasilinear in the numeraire. Here we discuss various ways in which our results canÑ
and cannotÑbe generalized.

Consider now a (K + 1)-good economy with one private numeraire good and K ! 1
nonnumeraire goods. Agent iÕs net consumption of the k th nonnumeraire good is de-
noted yk

i (or yk if the good is public) and her consumption of the numeraire is xi .
We say preferences are quasilinear-additive if there exist functions {vk

i }K
k= 1 such that

ui (x i #yi |&i ) = xi +
!

k vk
i (yk

i |&i ).
Quasilinear-additive preferences allow us to easily describe K distinct two-good

Òsub-economiesÓ in which K # 1 of the nonnumeraire goods are held Þxed and only
the numeraire and k th nonnumeraire goods vary. The lack of complementarities guar-
antees that the Þxed level of the other K # 1 goods does not affect preferences in the
k th subeconomy. Given any mechanism ' deÞned for two-good economies, we can de-
Þne the K -fold extension of ' to be the mechanism in a (K + 1)-good economy where
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! = (M i " xi " yi ) is applied simultaneously to all K two-good subeconomies. Thus, agents
submit messages mi = (m1

i " # # # "mK
i ) ! M K

i , the k th nonnumeraire quantity is deter-
mined by yi (mk ) (where mk = (mk

1"# # # "mk
n)), and the numeraire quantity for agent i is

determined by
!

k xi (mk ). The induced utility function over the message space of the
K -fold extension of ! is simply the sum of induced utilities over each subeconomy:

Ui (m) =
"

k

#
vk

i (yi (mk )|$i ) + xi (mk )
$
#

P!"#"$%&%"' 1. Take any mechanism ! deÞned for two-good economies. In a (K + 1)-
good economy with quasilinear-additive preferences, the K -fold extension of ! is contrac-
tive if ! is contractive on every two-good subeconomy.

Proposition 1 guarantees that the contractive mechanisms developed in Theorems 2
and 3 can be applied good-by-good in larger economies when preferences are quasilin-
ear additive. The proof is simple: Changes to mk

j for some j and k affect only yk
i and xi

for agent i . But for l "= k , this does not change iÕs marginal rate of substitution between
yl

i and xi . Thus, player iÕs best response is affected only in the mk
i component, and so

stability in the (K + 1)-good economy is equivalent to stability in each subeconomy.

Relaxing quasilinearity and bounded convexity of preferences

Although it is restrictive to limit attention to quasilinear-additive environments with
bounded concavity, earlier results by Jordan (1986) and Kim (1987) suggest that it is dif-
Þcult to go far beyond this with well behaved mechanisms. JordanÕs result shows that in
private-good economies, any well behaved mechanism that strongly Nash-implements
the Walrasian correspondence admits an environment, with a unique Walrasian alloca-
tion, such that the corresponding Nash equilibrium is not stable under a wide class of
continuous-time dynamics. Kim (1987) extends this result to public-good economies.
Jordan remarks that his instability theorem crucially relies on the range of second-order
preference behavior present in his environments. Our environments, instead, aim to
turn off or bound these second-order effects. This explains why the stability problem
becomes very difÞcult, even in quasilinear environments, when bounded concavity or
additive separability is relaxed. Consider the case of bounded concavity Þrst. Suppose
that v##

i is arbitrarily close to zero. Nash-implementing a Walrasian or Lindahl alloca-
tion requires the Þrst-order condition v#

i (yi (m) |$i ) = qi (m) to be satisÞed. Consider any
change in mj for some j "= i that alters qi . Agent iÕs best response to this change must
alter v#

i by an equal amount to restore the Þrst-order condition. When v##
i is very small,

however, this requires a very large shift in y(m) , which can only be accomplished by a
large change in mi .22 Since the response in mi is larger than the original shift in mj , the
mechanism cannot be contractive.

22Clearly there is an offsetting effect if %yi / %mi is large, but this derivative is Þxed for any given yi (m$),
while v##

i is moving arbitrarily close to zero; eventually the v##
i effect must dominate.
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P!"#"$%&%"' 2. Supposeui (x i ! yi |" i ) = vi (yi |" i ) + xi . If for every # > 0, there is somei ,
" i , and y such that v!!

i (y |" i ) " (# #! 0), then no mechanism that implements Walrasian or
Lindahl allocations is contractive on $ .

In the presence of multiple private (public) goods, the strength of complementari-
ties between the various goods can have destabilizing effects that are hard to accommo-
date. Requiring contractiveness in each good separately is no longer sufÞcient for stabil-
ity, and requiring contractiveness for all goods simultaneously becomes a strong condi-
tion as the number of goods is increased. Bounding concavity serves a similar purpose.
Without it, a small change in some agentsÕ messages could lead other agents to overre-
act greatly, as we argued in Proposition 2 . This fundamental overreaction would not be
overcome by appealing to a different notion of stability; bounded concavity appears to
be necessary for any stability concept.

Summary and future directions

From a theoretical perspective, these newly constructed mechanisms have nearly all the
features one might ask: they implement Pareto optimal and individually rational allo-
cations for a wide range of economic environments, they are dynamically stable for a
large family of adaptive learning dynamics, they balance the budget both in and out of
equilibrium, and the individual message spaces are of minimal dimension necessary for
dynamic stability.

The theorems in this paper make heavy use of the rich type space assumption. Suf-
Þciently weakening this assumption opens the door for mechanisms to have qi de-
pend on ri , or for gi to be nonzero, which in turn makes dynamic stability an easier
requirement to satisfy. For example, with only two possible type proÞles (each with a
unique Lindahl equilibrium) the triple tangency property needs to be satisÞed only at
two points; away from those two points, the mechanism can be ÒbentÓ arbitrarily to
satisfy the desired stability properties. As the type space grows, this ßexibility clearly
diminishes.

The obvious next step for future research is to return to the lab with these newly con-
structed mechanisms to understand what additional requirements they should be asked
to satisfy. Perhaps bounds on mechanism complexity or the limits on the magnitude of
out-of-equilibrium punishments will be identiÞed as the next important factor for the
theory to incorporate. Eventually these mechanisms can be Þeld-tested on a small scale
and the theory will be reÞned further as a result.

A##(')%*

P!""+ "+ T,("!(- 1. The proof follows by induction. Pick a starting time t0. By deÞ-
nition of an ABR dynamic, for each point in time tn there exists some later point in time
tn+ 1 > t n such that for all t $ tn+ 1, S(µ(t)) %B(%(B(H(t n! t)))) . For each n " {1! 2!&&&}, let
M n = H(t n! tn+ 1) be the history of play from tn to tn+ 1.
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For any metric d on M , any set M ! " M , and any point m! # M , the d-Hausdorff
distance between M ! and the singleton set {m!} is given by

hd(M !! m!) = sup
m#M !

d(m! m!)"

Therefore, for any set M ! " M , hd(M !! m$) = hd(B( M !)! m$). Thus,

#hd(M 1! m$) = #hd(B( M 1)! m$)

%hd($ (B( M 1)) ! m$)

= hd(B( $ (B( M 1))) ! m$)

%hd(M 2! m$)!

where the Þrst inequality comes from the contraction property of $ and the last inequal-
ity follows from the fact that M 2 & B($ (B( M 2))) . Taking any n and n + 1, we can use a
similar argument to show that #hd(M n! m$) %hd(M n+ 1! m$). Therefore, for all n > 1,

#nhd(M 1! m$) %hd(M n! m$)!

which implies that the sequence M n converges to {m$}, and so any ABR dynamics con-
verges to m$. !

P!""# "# T$%"!%& 2. Recall that the mechanism is given by

y(r) =
1
n

!

i

ri

qi (r ' i ! s' i ) =
%
n

+ &
"

(n ' 1)si ' 1 ' '
!

j (= i

rj

#

gi (r! s) = 1
2(si ' ' ri+ 1)2 + 1

2&(si ' 1 ' ' ri )2"

Step 1. We Þrst prove that the mechanism is contractive on the given parameter
ranges.

We use the Òdirect methodÓ for calculating the slopes of the best-response functions
and verifying contractiveness for the given parameter restrictions.

The induced utility function over strategies for agent i is, therefore,

Ui (r! s) = vi (y(r)) ' qi (r ' i ! s' i )y(r) ' gi (r! s)"

Let ( i (r ' i ! s' i ) and ) i (r ' i ! s' i ) be iÕs best-response values ofri and si , respectively.
Since si enters only into gi (r! s), it is clear that ) i = ' ri+ 1.
The Þrst-order condition on ri is given by

1
n

v!
i (y( ( i ! r' i )) '

%
n2

'
1
n

&
"

(n ' 1)si ' 1 ' '
!

j (= i

rj

#
+ &' (si ' 1 ' '( i ) = 0"
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Differentiating with respect to rj (j != i ) gives

1
n2

v""
i +

1
n2

v""
i

!" i

! rj
+ #$

1
n

# #$2 !" i

! rj
= 0%

Therefore,

!" i

! rj
=

v""
i + #$n

#$2n2 # v""
i

%

Differentiating with respect to si# 1 gives

1
n2

v""
i

!" i

! si# 1
# #

n # 1
n

+ #$ # #$2 !" i

! si# 1
= 0&

and so
!" i

! si# 1
=

#n($n # (n # 1))
#$2n2 # v""

i
%

Differentiating with respect to any other sj (j /$ {i # 1&i}) gives

1
n2

v""
i

!" i

! sj
# #$2 !" i

! sj
= 0&

which means
!" i

! sj
= 0%

Finally, we know that ' i = $ri+ 1, so

!' i

! ri+ 1
= $

and all other slopes of ' i are zero.
The contractiveness condition on ' i (using the row-sum norm) is

!

j != i

"
"
"
"
!' i

! rj

"
"
"
" +

!

j != i

"
"
"
"
!' i

! sj

"
"
"
" < 1

for all (r&s). This reduces here to

|$| < 1% (27)

The stability condition on " i is

!

j != i

"
"
"
"
!" i

! rj

"
"
"
" +

!

j != i

"
"
"
"
!" i

! sj

"
"
"
" < 1

for all (r&s). For the current mechanism, this becomes

(n # 1)

"
"
"
"

v""
i + #$n

#$2n2 # v""
i

"
"
"
" +

"
"
"
"
#n($n # (n # 1))

#$2n2 # v""
i

"
"
"
" < 1
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or

(n ! 1)|v""
i + !" n| +

!
!! n(" n ! (n ! 1))

!
! < !" 2n2 ! v""

i #

Let

! >
$
" n

% (28)

so that the Þrst absolute value in the stability condition is positive. We now consider
three cases, depending on whether the argument of the second absolute value term is
positive, negative, or zero. Note that in the Þrst case, the mechanism is supermodular
since all slopes are positive, while in the second case, it is not. The third case represents
the boundary of supermodularity.

Case 1. " > (n ! 1)/n . Given the stability condition &i from ( 27), we must have

" #
"

n ! 1
n

%1
#

#

The stability condition then becomes

(n ! 1)( !" n + v""
i ) + ! n(" n ! (n ! 1)) < !" 2n2 ! v""

i #

Solving this for ! gives

! <
! v""

i

n
$
" ! n! 1

n

%
(1 ! " )

#

Since ! v""
i > 1/ $ , this condition on ! is satisÞed if

! <
1

$
" ! n! 1

n

%
(1 ! " )n$

#

Recalling (28), contractiveness is satisÞed if

" #
"

n ! 1
n

%1
#

and

! #

&
$
n"

%
1

$
" ! n! 1

n

%
(1 ! " )n$

'

#

Note that this interval for ! is nonempty only if " is close enough to either (n ! 1)/n
or 1. This is automatically satisÞed whenever n > $ 2/( 2$ ! 1), since (n ! 1)/n and 1
become sufÞciently close together in that case. If n < $ 2/( 2$ ! 1), then we must have

" #
"

n ! 1
n

%1 !
(n + $ 2) +

(
(n + $2)2 ! 4n2$2

2n$2

#

$
"

1 !
(n + $ 2) !

(
(n + $2)2 ! 4n2$2

2n$2
%1

#



644 Healy and Mathevet Theoretical Economics 7 (2012)

to guarantee that a required value of ! exists. The right interval is always nonempty.
A bit of algebra reveals that the left interval is nonempty when n < " 2, which is true here
since n < " 2/( 2" ! 1). Thus, there are always values of # close enough to (n ! 1)/n or 1
to guarantee a choice of ! that ensures the mechanism is contractive.

Case 2. # < (n ! 1)/n . In this case, (27) is automatically satisÞed, and so stability of
$i is guaranteed. The stability condition on %i becomes

(n ! 1)( !# n + v""
i ) + ! n((n ! 1) ! #n) < !# 2n2 ! v""

i &

Solving for ! gives

! <
! v""

i

n(1+ #)
! n! 1

n ! #
" &

Since ! v""
i < 1/ " , this is satisÞed whenever

! <
1

! n! 1
n ! #

"
(1+ #)n"

&

Thus, contractiveness is satisÞed if

# <
n ! 1

n

and

! #

#
"
n#

'
1

! n! 1
n ! #

"
(1 + #)n"

$

&

Note that such a ! exists only if # is sufÞciently close to (n ! 1)/n . SpeciÞcally, it must
be that

# #
%&

(n + " 2)2 + 4n(n ! 1)" 4 ! (n + " 2)
2n" 2

'
n ! 1

n

'
'

which is always nonempty for n $ 3.
Case 3. # = (n ! 1)/n . In this case the second absolute value becomes zero ( ri does

not respond to si! 1) and so the stability condition reduces to

(n ! 1)( !# n + v""
i ) < !# 2n2 ! v""

i &

Plugging in # = (n ! 1)/n and solving for ! gives

! < ! v""
i

n2

(n ! 1)3
'

which is satisÞed for all v""
i if

! <
1
"

n2

(n ! 1)3
&
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Thus, contractiveness obtains if

! !
!

"
n " 1

#
1
"

n2

(n " 1)3

"
#

but this is nonempty only if

" <
n

n " 1
$

Since " > 1 by deÞnition, this case applies only when

" !
!

1#
n

n " 1

"
#

which is a very narrow range.
Step 2. We now prove that the mechanism Nash-implements the Lindahl

correspondence.
To see that a unique Lindahl equilibrium exists for all %, note the following necessary

and sufÞcient conditions for any Lindahl equilibrium.

(i) Given p #
i and y#, it must be that x#

i = " p #
i y# for all i .

(ii) This implies that &vi (y#)/ &y = p #
i for each i .

(iii) Linearity of the ÞrmÕs proÞt function then implies that
#

i &vi (y#)/ &y =
#

i p #
i = ' .

Using these conditions, we can derive the unique Lindahl equilibrium in three steps:

(i) Since v$$
i ! (" "# " 1/ " ) for each i , there is one unique y# satisfying the third nec-

essary condition.

(ii) Given the unique y#, there is one unique p #
i for each i satisfying the second

condition.

(iii) Given y# and p #
i , there is one unique x#

i for each i satisfying the Þrst condition.

Since the mechanism is contractive, it also has a unique Nash equilibrium (r ##s#)
for every %. Now take the equilibrium message (r ##s#) and let p #

i = qi (r #
" i #s#

" i ) . Then
xi (r ##s#) = " p #

i y(r #) for each i , satisfying the Þrst condition. Furthermore, the Þrst-
order condition for maximization in ri at an equilibrium point implies that

v$
i (y(r #))

&yi (r #)
&ri

= p #
i

&yi (r #)
&ri

+
&gi (r ## ( (r #))

&ri
$

Since &yi (r)/ &ri %= 0 and &gi / &ri = 0 at the equilibrium point, we have that v$
i (y(r #)) = p #

i ,
satisfying the second condition. Finally, it is easy to check that

#
i qi (r #

" i #s#
" i ) = ' at the

equilibrium point since s#
i = ) r#

i+ 1 for each i and so the third condition is satisÞed. Thus,
the unique equilibrium point is equal to the unique Lindahl allocation. !
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P!""# "# C"!"$$%!& 1. Consider the mechanism without dL
i (r ! i ! s! i ) added. In gen-

eral, the excess numeraire collected at any message proÞle (r! s) equals
!

i

qi (r ! i ! s! i )y(r) +
!

i

gi (r! s) ! " y(r) #

For the current mechanism, this equals

!

i

"
"
n

+ $
#

(n ! 1)si ! 1 ! %
!

j "= i

rj

$%
y(r) +

!

i

"
1
2

(si ! %ri+ 1)2 +
$
2

(si ! 1 ! %ri )2
%

! " y(r) !

which reduces to
"
$

!

i

#
(n ! 1)si ! 1 ! %

!

j "= i

rj

$
y(r)

%
+

" !

i

1
2

(si ! %ri+ 1)2 +
!

i

$
2

(si ! 1 ! %ri )2
%
# (29)

Now consider the function

dL
i (r ! i ! s! i ) = $

n ! 1
n

## !

j "= i

rj

$
[si+ 1 ! %ri+ 2] + ri+ 1[si+ 2 ! %ri+ 3]

$

(30)
+

1
2

(si+ 1 ! %ri+ 2)2 +
$
2

(si ! 2 ! %ri ! 1)2#

Let the new mechanismÕs penalty function be gi (r! s) ! dL
i (r ! i ! s! i ) .

The function dL
i (r ! i ! s! i ) has three properties. First, in any equilibrium dL

i = 0, since
si = %ri+ 1 for every i . Thus, total penalties remain zero in equilibrium. Second, dL

i does
not depend on iÕs announcement; therefore, neither the equilibrium nor the contrac-
tiveness of the mechanism is affected by the addition of this term. Finally, the sum of
the dL

i terms always equals the excess numeraire collected, so the new mechanism is
always exactly balanced.

To see that the sum of dL
i terms always equals the excess numeraire, note that

!

i

dL
i (r ! i ! s! i ) = $

n ! 1
n

!

i

## !

j "= i

rj

$
[si+ 1 ! %ri+ 2] + ri+ 1[si+ 2 ! %ri+ 3]

$

+
!

i

"
1
2

(si+ 1 ! %ri+ 1)2 +
$
2

(si ! 2 ! %ri ! 1)2
%
#

The second term here equals the second term in the expression of excess numeraire,
(29). The Þrst term can be rewritten as

$
n ! 1

n

#!

i

# !

j "= i

rj

$
[si+ 1 ! %ri+ 2] +

!

i

ri+ 1[si+ 2 ! %ri+ 3]
$

#

By shifting the indices of the Þnal sum, this is equal to

$
n ! 1

n

#!

i

# !

j "= i

rj

$
[si+ 1 ! %ri+ 2] +

!

i

ri [si+ 1 ! %ri+ 2]
$

#
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But now that reduces to

!
n ! 1

n

! "

i

ri

#$! "

i

si

#
! "

! "

i

ri

#%
#

which is exactly the Þrst term in ( 29). Thus, the resulting mechanism is always
balanced. !

P!""# "# T$%"!%& 3.
Step 1. We Þrst show that the mechanism is contractive. Agent iÕs utility over strate-

gies in this mechanism is given by

Ui (r#s|$) = vi (yi (r#s! i )|$) ! !
!

si ! 1 + "
"

j "= i

rj

#
yi (r#s! i ) ! (si ! " ri+ 1)2%

To Þnd iÕs best-response function, we compute the Þrst-order conditions

&Ui (r#s|$)
&ri

# v$
i (yi (á))

&yi

&ri
!

1
!

!
si ! 1 + "

"

j "= i

rj

#
&yi

&ri
= 0

&Ui (r#s|$)
&si

# si ! " ri+ 1 = 0%

So

' i (r ! i #s! i ) =
1

n ! 1

"

j "= i

rj + v$! 1
i

!
1
!

!
si ! 1 + "

"

j "= i

rj

#&
&
&$

#

( i (r ! i #s! i ) = " ri+ 1%

The sufÞcient conditions for the mechanism to be contractive are then

"

j "= i

&
&
&
&
&' i (r ! i #s! i )

&rj

&
&
&
&+

"

j "= i

&
&
&
&
&' i (r ! i #s! i )

&sj

&
&
&
&=

! "

j "= i

&
&
&
&

1
n ! 1

+
"

! v$$
i (á|$)

&
&
&
&

#
+

&
&
&
&

1
! v$$

i (á|$)

&
&
&
&< 1 (31)

and
"

j "= i

&
&
&
&
&( i (r ! i #s! i )

&rj

&
&
&
&+

"

j "= i

&
&
&
&
&( i (r ! i #s! i )

&sj

&
&
&
&= " < 1%

For the Þrst condition, recall that v$$
i (á|$) %(! )# ! 1/ ) ), so if ! > ") (n ! 1), then

1
n ! 1

+
"

! v$$
i (á|$)

> 0%

Therefore, the left-hand side of ( 31) is equal to

1+
" (n ! 1) ! 1

! v$$
i (á|$)

#
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which is less than 1 when ! > 1/(n ! 1). Thus, the mechanism is contractive when ! "
(1/(n ! 1)" 1) and # > !$ (n ! 1).

Step 2. Proving that this mechanism fully implements the Walrasian correspondence
is a direct consequence of Theorem 7. Take a Nash equilibrium (r #" s#) for %" &. Then,
from the previous step, we know s#

i! 1 = ! r#
i . As a result,

qi (r #
! i " s#

! i ) = #
!

s#
i ! 1 + !

"

j $= i

r#
j

#
=

n"

i= 1

! r#
i = Q#

for all i " I and

xi (r #" s#) = ! Q#yi (r #" s#)' (32)

By deÞnition of Nash equilibrium, ui (r #" s#) %ui (r i " r#
! i " s#) for all ri ; that is,

vi (yi (r #" s#)|%) ! Q#yi (r #" s#) %vi (yi (r i " r#
! i " s#)|%) ! Q#yi (r i " r#

! i " s#) (33)

for all ri . Since yi is a surjection from R onto R (in ri ), (33) implies

vi (yi (r #" s#)|%) ! Q#yi (r #" s#) %vi (yi |%) ! Q#yi (34)

for all yi . Finally, we verify that allocation [yi (r #" s#)" xi (r #" s#)]i is balanced. By deÞnition,

"

i

yi (r #" s#) =
"

i

r#
i !

1
n ! 1

"

i

"

j $= i

r#
j = 0'

Since x#
i (r #" s#) = ! Q#yi (r #" s#), then

$
i x#

i (r #" s#) = 0. It follows from balancedness,
(32), and (34) that allocation [yi (r #" s#)" xi (r #" s#)]i is a Walrasian allocation. To complete
the proof, start with the Walrasian allocation [Y #

i " X #
i ]i of some environment %. From

Step 1, the mechanism is contractive, hence a Nash equilibrium exists (by Banach Þxed
point theorem). From the previous argument, this Nash equilibrium must correspond
to a Walrasian allocation, which is necessarily [Y #

i " X #
i ]i . !

P!""# "# C"!"$$%!& 2. For the case of n %4, the imbalance can be done by taking the
gi function from ( 13) and modifying it to

ögi (r" s) = gi (r" s) + dW
i (r ! i " s! i )"

where

dW
i (r ! i " s! i ) = ! (si+ 1 ! ! ri+ 2)2 +

1
#

!
(si ! 2 ! ! ri ! 1)r i ! 1 +

1
n ! 1

(! ri+ 2 ! si+ 1)r i ! 1

(35)

+
1

n ! 1

"

k$= i"i ! 1

(! ri+ 3 ! si+ 2)r k

#
'

As in the proof of Corollary 1 , we note that this function sums to zero at any candi-
date equilibrium point, does not affect equilibrium or stability since it depends only on
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(r ! i ! s! i ) , and a bit of algebra conÞrms that
!

i dW
i always equals the excess numeraire

collected by the mechanism absent dW
i . Thus, the resulting mechanism also implements

Walrasian equilibrium allocations and is contractive, but now is balanced out of equilib-
rium as well. !

The rich type space assumptions

With multiple dimensions, it becomes overly restrictive to assume that " (#) = M (As-
sumption 4 ) because the dimensionality of " ($ ) may be strictly less than that of M . But
for any %, we have ruled out two types of messages that can never be Nash equilibria
of %for any # " $ and we have deÞned M #. The analog of Assumption 4 for multiple
dimensions is the following.

A!!"#$%&'( 4$. We have" ($ ) = M #.

This assumption is used in the next section to derive conditions on mechanisms.
Here we break it into two separate (but linked) assumptions on primitives; in the case of
one-dimensional mechanisms, these assumptions imply Assumption 4 .

A!!"#$%&'( 6. Some&" {2! 4! 6! ' ' ' } exist such that the following statements hold.

(A) All &th order preferences are admissible:

$ & :=
"
# " $ : (%i) ( &(( i ! ) i ) " (R++ ' R)) s.t. ui (x i ! yi |#i ) = (! ( i y

&
i + ) i yi ) + xi

#
( $'

(B) For all r " R , all s " * (r) , and all i " I , there exists some Þnite+i (r) > 0 such that
for all r$

i " R i and s$
i " * i (r $

i ! r! i ! s! i ) ,

|xi (r $
i ! r! i ! s$

i ! s! i ) ! xi (r! s)| ) +i (r) max
"
|yi (r $

i ! r! i ) ! yi (r) |&! |yi (r $
i ! r! i ) ! yi (r) |1/ &#

'

Assumption 6 (A) simply requires that all polynomial (quasilinear) preferences of or-
der & be permitted in the type space. To interpret Assumption 6 (B), let & = 2 and con-
sider changes in mi that lead to large changes in yi . In this case, the squared term in the
maximand applies, and so the assumption places quadratic upper and lower bounds
on the change in xi . For changes in mi that lead to small changes in yi , the upper and
lower bounds are square-root bounds. In either case, the requirement is strictly weaker
than requiring that , i be Hšlder continuous of degree & or that , i be Lipschitz continu-
ous. The bounds on , i imposed by this assumption are demonstrated in Figure 6. Note
that as & increases, Assumption 6 (B) becomes strictly weaker though Assumption 6 (A)
requires more ÒexoticÓ preferences in the economy.

Given these modiÞed assumptions, we can now prove that Assumption 4 $ (or As-
sumption 4 ) holds.

P)'$'!&%&'( 3. Take any mechanism %= (M i ! xi ! yi ) i " I and & satisfying Assump-
tions 1$, 2$, and 6(B), and any type space $ satisfying Assumption 6(A). If & ) 2, then
Assumption 4$is satisÞed:" ($ ) = M #. If &> 2, then {(r! s) " M # :yi (r) *= 0 %i} ( " ($ ).
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F!"#$% 6. The bounds on ! i (yi |m! i ) imposed by Assumption 6 (B) for " = 2.

P$&&' . DeÞne

M "" = { (r#s) # M " : yi (r) " ! 2 $= 0 %i}$

Note that if " # {1#2}, then M " = M "" (using the convention that 00 = 1). We know that
%(&) & M " ; Proposition 3 can then be proven by showing that M "" & %(&). This is done
by constructing a mapping ' :M "" ' &" such that m # %(' (m)) for all m # M "" . Thus,

M "" & %(' (M "" )) = %(&" ) & %(&)#

giving the result.
SpeciÞcally, consider the mapping ' :M "" ' &" such that ' i (m" ) = (( i (m" )#

) i (m" )) # R+ ( R for each m" # M "" and

ui (x i #yi |' i (m" )) = vi (yi |' i (m" )) + xi #

where

vi (yi |' i (m" )) = !
( i (m" )

"
y"

i + ) i (m" )yi

and, for a given value of ( i (m" ) (to be determined later in the proof), ) i (m" ) is given by

) i (r " #s" ) := ( i (r " #s" )y " ! 1
i (r) + Pik (r " #s" ) (36)

(recall that Pik is the effective price function deÞned in ( 15) and does not depend on k
since m" # M "" ).

We now Þx an arbitrary m" = (r " #s" ) # M "" and show that m"
i is a best response to

m"
! i for each i in environment ' (m" ) = (( i (m" )# ) i (m" )) i#I . This is done in two steps:

Þrst we verify that m"
i is a local optimum in response to m"

! i for each i and then we show
that m"

i can be made a global optimum by increasing ( i (m" ) sufÞciently, allowing ) i (m" )
to adjust appropriately as ( i (m" ) changes.
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Given ! i (m! ), iÕs objective is to choose(r i " si ) to maximize

"
#i (m! )

$
yi (r i " r !

" i )
$ + %i (m! )yi (r i " r !

" i ) + xi (r i " si " r !
" i " s!

" i )& (37)

For local optimality, the Þrst-order conditions for each sik are already satisÞed at m! by
the construction of M !! (see (21)). As for rik , agent iÕs Þrst-order condition for utility
maximization at (r ! " s! ) with respect to each rik is

[" #i (r ! " s! )y$" 1
i (r) + %i (r ! " s! )]

' yi (r)
' rik

+
' xi (r" s)

' rik
= 0&

But the construction of %i ((36)) guarantees that this is satisÞed at (r" s) = (r ! " s! ) for any
#i (r ! " s! ) , so the Þrst-order conditions are satisÞed for all m! # M !! .

To describe the second-order conditions for local optimality, we show that the ma-
trix of second-partial derivatives of iÕs objective function are negative deÞnite for sufÞ-
ciently large #i (m! ). Shortening notation, let Xr and Xs be the column vectors of partial
derivatives of xi with respect to ri and si , respectively, and let Xrr , Xrs, and Xss represent
the matrices of cross-partial derivatives of xi . Similarly deÞne Yr and Yrr as the partial
and cross-partial derivatives of yi , respectively. Using this notation, the matrix of second
partial derivatives of the objective function ( 37) (after inserting the deÞnition of %i (m! )
from ( 36)) is given by the K i $ K i matrix

Hi =

!
" #i (m! )( $ " 1)yi (r ! )$" 2(Yr áYT

r ) + Pik (m! )Yrr + Xrr Xrs

XT
rs Xss

"

"

where again Pik (m! ) does not depend on k since m! # M !! . Now take any direction
(dr " ds) %= 0 of deviation from m!

i . Since m! # M !! implies s! # ( (r ! ) , we know that any
deviation with dr = 0 does not yield strictly higher utility, hence (0" ds)T áHi á(0" ds) & 0.
For any direction (dr " ds) with dr %= 0, we have

(dr " ds)T áHi á(dr " ds) = " #i (m! )( $ " 1)yi (r ! )$" 2dT
r (Yr áYT

r )dr + K i (m! )

= " #i (m! )( $ " 1)yi (r ! )$" 2(dT
r Yr )2 + K i (m! )"

where

K i (m! ) = dT
r [Pik (m! )Yrr + Xrr ]dr + 2dT

r Xrsds + dT
s Xssds&

Since xi and yi are continuously differentiable and ' yi / ' ri is bounded away from zero,
K i (m! ) is Þnite for all m! . Because yi (r ! )$" 2 %= 0, #i can be chosen to be any function
satisfying

#i (m! ) > K i (m! )(( $ " 1)yi (r ! )$" 2)" 1(dT
r Yr )" 2

for all m! # M !! , so that (dr " ds)T áHi á(dr " ds) < 0. Thus, m!
i is a local best response to

m!
" i for large enough #i (m! ).

We now construct ! i (m! ) by increasing #i (m! ) until m!
i is a global best response

to m!
" i . Since m!

i is a local best response, there is some neighborhood Ni (m! ) of m!
i
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on which m!
i maximizes iÕs utility given ! i (m! ). Although increasing ! i may change the

neighborhood around m! on which m!
i is a local best response, the neighborhood can

only increase in size as ! i is increased. Thus, we ignore this dependence of Ni (m! ) on
! i and show that any m"

i /# Ni (m! ) yields a lower payoff than m!
i when ! i is sufÞciently

large.
To proceed, pick any m"

i and m""
i such that m!

i # (m"
i " m""

i ) $ Ni (m! ) and, to shorten
notation, let y!

i = yi (r ! ) , x!
i = xi (m! ), y"

i = yi (r "
i " r !

%i ), x"
i = xi (m"

i " m!
%i ), y""

i = yi (r ""
i " r !

%i ), and
x""

i = xi (m""
i " m!

%i ).
To show that ui (x !

i " y!
i ) %ui (x "

i " y"
i ) & 0 for some ! "

i , we expand this expression to get

! "
i

!"
# %1

#
y! #

i +
1
#

y"#
i

#
%(y! #

i )
#%1

# (y "#
i )

1
#

$
+ Pik (m! )(y !

i %y"
i ) & (x "

i %x!
i )"

which, by Assumption 6 (B), is true if

! "
i

!"
# %1

#
y! #

i +
1
#

y"#
i

#
%(y! #

i )
#%1

# (y "#
i )

1
#

$
+ Pik (m! )(y !

i %y"
i )

(38)
& $i (m! )# max

%
|y!

i %y"
i |

#" |y!
i %y"

i |
1
#
&

(the extra # before the maximizing operator is needed for a later step). But the term
in square brackets is the difference between the weighted arithmetic mean and the
weighted geometric mean of the two points y! #

i and y"#
i ; by the inequality of arithmetic

and geometric means (the AM-GM inequality) this difference is positive. Thus, there is
some Þnite ! "

i at which inequality ( 38) is true. Similarly, there is some Þnite ! ""
i at which

the expression ui (x !
i " y!

i ) % ui (x ""
i " y""

i ) & 0 is true. Let ! i (m! ) = max{! "
i " ! ""

i } and now Þx
%i (m! ) = (! i (m! )" &i (m! )) .

Suppose that y"
i < y ""

i (the proof for the case where y""
i < y "

i is symmetric) and pick any
yi & y""

i . Suppose that

! i (m! )
!"

# %1
#

y! #
i +

1
#

y#
i

#
%(y! #

i )
#%1

# (y#
i )

1
#

$
+ Pik (m! )(y !

i %yi )

(39)
%$i (m! )# max

%
|y!

i %yi |#" |y!
i %yi |

1
#
&

& 0"

which is true for yi = y""
i (see inequality ( 38)). Then the derivative of the left-hand side of

this inequality is positive, implying that the inequality is true for all yi & y""
i ; to see this,

take the derivative of the left-hand side and multiply by (yi %y!
i ) > 0 to get either

! i (m! )[y! #
i %y! #%1

i yi + y#
i %y!

i y#%1
i ] + Pik (m! )(y !

i %yi ) %$i (m! )#(yi %y!
i )# (40)

or

! i (m! )[y! #
i %y! #%1

i yi + y#
i %y!

i y#%1
i ] + Pik (m! )(y !

i %yi ) %$i (m! )
1
#

(yi %y!
i )1/ #' (41)

In either case, the expression is greater than the left-hand side of ( 39) because

[y! #
i %y! #%1

i yi + y#
i %y!

i y#%1
i ] &

!"
# %1

#
y! #

i +
1
#

y#
i

#
%(y! #

i )
#%1

# (y#
i )

1
#

$
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reduces to
!

! ! 1
!

y" !
i +

1
!

y!
i

"
# (y" !

i )
! ! 1

! (y !
i )

1
! "

which is just the AM-GM inequality again. Thus, both ( 40) and (41) are positive. By
continuity, ( 39) is positive for all yi # y$$

i and so deviations resulting in yi # y$$
i are not

proÞtable. A symmetric argument shows that deviations to yi %y$
i are also not proÞtable.

Since we already know that deviations resulting in yi & (y$
i " y$$

i ) are unproÞtable, the proof
is complete. !

Multidimensional mechanisms and the proof of Theorem 4

In the previous section, we provided two linked assumptionsÑone on the type space
and one on the mechanismÑthat together imply Assumption 4 $. Now we deÞne regular
candidate equilibrium points for which our theorem applies. Let R " be the projection
of M " onto R .

D!"#$#%#&$3. A candidate equilibrium (r " " s" ) & M " is regular if # (r) is locally
threaded by some differentiable function $ = ' i $i for each i ; formally, (r " " s" ) is reg-
ular if for each i , there is some open set R 0

i ( R "
i containing r"

i and a differentiable
function $i :R ' S! i ) Si such that $i (r " " s"

! i ) = s"
i and (r $

i " r "
! i " $i (r $

i " s"
! i )" s"

! i ) & M " for all
r$
i & R 0

i .23

A candidate equilibrium (r " " s" ) is regular if differential deviations in ri can always
be accompanied by a differential change in si such that the joint deviation does not lead
to a strategy proÞle outside of M " . We refer to $i as iÕsadjustment function . An example
of a nonregular equilibrium is one for which a differential change in ri leads to a point
at which # (r) is empty or has a jump discontinuity.

We now prove higher-dimensional analogs to Theorem 4 and Corollary 3 .

T'!&(!) 8 (Necessity). Suppose a mechanism%= (M i " xi " yi ) i&I Nash-implements the
Lindahl or Walrasian correspondences and satisÞes Assumptions 1$, 2$, and 4$. Writing
the mechanism as

xi (r" s) = ! qi (r" s)yi (r" s! i ) ! gi (r" s)"

it must be the case that for every regular point (r " " s" ) & M " with adjustment functions
($i ) i ,

dqi (r " " $i (r " " s"
! i )" s"

! i )

drik
= 0 * i & I " k & {1" &&&"Ji }

23The locally threaded condition rules out space-Þlling Peano functions, for example. Mount and Reiter
(1974, 1977) describe the communication requirements of implementation via a Òmessage processÓ ' : ( "
M that may or may not be an equilibrium correspondence. They assume ' is locally threaded to rule out
pathological cases where Peano functions are used to economize on message space dimensions.
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and

gi (r ! ! s! ) = 0"

P!""# . For any # " $ , let p i (#) be agent iÕs price for goodyi at the Walrasian or Lindahl
equilibrium for environment #. For any m " %($ ), let &(m) " $ identify an environment
# for which m is an equilibrium. Thus, p i (&(m)) is the Walrasian or Lindahl price that
must be charged to agent i in the environment &(m) . Pick any regular equilibrium point
m! = (r ! ! s! ) in M ! and, for notational simplicity, let y!

i = yi (r ! ) and x!
i = xi (m! ). The

proof then follows from three important observations that must be true at m! for each
i " I .

(A) Becausem! is a Nash equilibrium for some # " $ , the Þrst-order condition

' ui (x !
i ! y!

i |#i )

' yi

' yi (r !
i )

' rik
=

' ui (x !
i ! y!

i |#i )

' xi

!
#

' xi (r ! ! s! )
' rik

"
(42)

is satisÞed for each k " {1! " " " !Ji }.

(B) If m! maps to a Walrasian or Lindahl equilibrium for some # " $ , then it must be
that the transfers collected by the mechanism equal the transfers of the numeraire
required by the Walrasian or Lindahl equilibrium:

xi (r ! ! s! ) = # p i (&(r ! ! s! ))y i (r ! )" (43)

(C) If m! maps to a Walrasian or Lindahl equilibrium for some # " $ , then the Wal-
rasian or Lindahl price must equal the marginal rate of substitution of yi in terms
of xi :

' ui (x !
i ! y!

i |#i )/ ' yi

' ui (x !
i ! y!

i |#i )/ ' xi
= p i (&(r ! ! s! )) " (44)

Dividing both sides of ( 42) by ' ui / ' xi , inserting ( 44), and rearranging gives

' xi (r ! ! s! )
' rik

= # p i (&(r ! ! s! ))
' yi (r ! )

' rik
(45)

for each i and k .
Since (r ! ! s! ) is a regular equilibrium point, differential changes in ri accompanied

by the requisite change in si lead to other points in M ! at which the above equations
hold. Now take the total derivative of ( 43) with respect to ri (allowing for the adjustment
in si ); since si maximizes xi , the envelope theorem guarantees that dxi /dr ik = ' xi / ' rik

and so the total derivative is

' xi (r ! ! s! )
' rik

= # p i (&(r ! ! s! ))
' yi (r ! )

' rik
#

dp i (&(r ! ! s! ))
drik

yi (r ! )" (46)

Comparing ( 45) and (46), it must be that either yi (r ! ) = 0 or dp i (&(r ! ! s! ))/dr ik = 0
for all k .
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If yi (r ! ) "= 0 but dp i (! (r ! " s! ))/dr ik = 0 for all k , then, by ( 43),

gi (r ! " s! ) =
!
p i (! (r ! " s! )) # qi (r ! " s! )

"
yi (r ! )

and so gi (r ! " s! ) can be expressed as hi (r ! " s! )yi (r ! ) for some function hi such that
dhi /dr ik = 0 for all k . But then xi (r ! " s! ) can be rewritten as

xi (r ! " s! ) = # [qi (r ! " s! ) + hi (r ! " s! )]yi (r ! )#

Label the bracketed term as ÷qi (r ! " s! ) and we have that

xi (r ! " s! ) = # ÷qi (r ! " s! )yi (r ! )

with d ÷q/dr ik = 0, giving the result.
If yi (r ! ) = 0, then by ( 43) we have gi (r ! " s! ) = 0. It remains to show that dqi (r ! " s! )/

drik = 0. Since dyi /dr ik is bounded away from zero, any perturbation of rik leads to
yi "= 0; by regularity of (r ! " s! ) , small perturbations lead to other regular equilibria with
yi "= 0 at which dqi /dr ik = 0. Since qi is continuously differentiable, it must be that
dqi (r ! " s! )/dr ik = 0 as well. !

P!""# "# T$%"!%&' 5 ()* 7. Consider the case of Lindahl equilibrium. Under the
maintained assumptions, an allocation (x !

1" ### "x!
n" y! ) is Lindahl equilibrium allocation

at $ if there exists some (p !
i ) i such that the following conditions hold.

(A) For each i , (x !
i " y! ) $ argmaxxi "y ui (x i " y|$i ) subject to xi = # p !

i y.

(B) We have
#

i p !
i = %.

For the Þrst part of the theorem, Þx a Nash equilibrium m! = (r ! " s! ) of & at $ and let
p !

i = qi (m!
# i ) for each i . Then condition B is satisÞed by hypothesis. Condition A can be

rewritten as

y! $ argmax
y

ui (# qi (m!
# i )y" y|$i )# (47)

Since y is bijective in ri for each m# i , this is equivalent to

(r !
i " s!

i ) $ argmax
(r i "si )

ui (# qi (r !
# i " s!

# i )y(r i " r !
# i " s!

# i )" y(ri " r !
# i " s!

# i )|$i )#

Becausegi %0 and gi = 0 at any equilibrium point, and ui is increasing in the Þrst argu-
ment, condition A is also equivalent to

(r !
i " s!

i ) $ argmax
(r i "si )

ui (# qi (r !
# i " s!

# i )y(r i " r !
# i " s!

# i ) # gi (r i " r !
# i " si " s!

# i )" y(ri " r !
# i " s!

# i )|$i )#

But this is clearly satisÞed since (r !
i " s!

i ) is a best response to (r !
# i " s!

# i ) . Thus,

(x 1(m! )" ### "xn(m! )" y(m! ))

is a Lindahl equilibrium allocation at $ with prices (p i (m!
# i )) i .
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For the second part of the theorem, Þx a Lindahl allocation (x ! ! y! ) with prices (p !
i ) i

such that message m" = (r "! s") maps to (x ! ! y! ) and qi (m"
# i ) = p !

i for each i ; Assump-
tion 5 guarantees that at least one such m" exists.

Condition A for Lindahl equilibria is equivalent to ( 47); since s" $ " (r "), this is equiv-
alent to

(r "
i ! s"

i ) $ argmax
(r i !si )

ui (# qi (r "
# i ! s"

# i )y(r i ! r "
# i ! s"

# i ) # gi (r i ! r "
# i ! si ! s"

# i )! y(ri ! r "
# i ! s"

# i )|#i )$

But this implies that (r "
i ! s"

i ) is a best response for each i , so (r "! s") is a Nash equilibrium
of %at #.

The proof for Walrasian equilibria is identical, setting & = 0. !

P!""# "# T$%"!%& 6. We know that no one-dimensional mechanism can exist that
Nash-implements the Walrasian correspondenceÑcontractive or not. For the public-
goods setting, suppose, to the contrary, that the mechanism (y! (qi ! gi )n

i= 1) Nash-
implements the Lindahl correspondence and is contractive. By Theorem 8, we know
that gi %0, and so for any quasilinear environment

ui (x i ! y|#i ) = vi (y |#i ) + xi

with v""
i < 0, we have

Ui (r i ! r# i ) = vi (y(r) |#i ) # qi (r # i )y(r) $

Agent iÕs best response is given by' i (r # i ) and satisÞes the Þrst-order condition

v"
i (y( ' i ! r# i )|#i ) = qi (r # i )

for all r# i . Take any r! and # for which r ! is a Nash equilibrium at #. By the implicit
function theorem, the slope of ' i at r ! with respect to each rj is

(' i

( rj
=

( qi / ( rj # v""
i (y |#i )( y/ ( rj

v""
i (y |#i )( y/ ( ri

$

For the mechanism to be contractive, it is necessary (though not sufÞcient) that for all i
and j &= i ,

!
!
!
!
( y/ ( rj

( y/ ( ri
#

( qi / ( rj

v""
i (y |#i ) ( y/ ( ri

!
!
!
! < 1$ (48)

Now select the agent j ! such that |( y(r ! )/ ( rj ! | ' |( y(r ! )/ ( ri | for all i . To satisfy (48), it
must be that ( y/ ( rj ! and ( qi / ( rj ! have the opposite signs for all i and that ( qi / ( rj ! &= 0
for all i . Therefore, each ( qi / ( rj ! has the same sign for all i &= j ! (and ( qj ! / ( rj ! = 0), so
that

"
i ( qi / ( rj ! &= 0. But since all r are Nash equilibria for some # and the mechanism

implements Lindahl allocations, it must be that
"

i qi (r # i ) = & for all r and, therefore,
that

"
i ( qi / ( rj ! = 0; this is a contradiction. !
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